Zobrazeno 1 - 10
of 150
pro vyhledávání: '"Vladimir D. Tonchev"'
New examples of self-dual near-extremal ternary codes of length 48 derived from 2-(47,23,11) designs
Autor:
Sanja Rukavina, Vladimir D. Tonchev
Publikováno v:
Examples and Counterexamples, Vol 5, Iss , Pp 100130- (2024)
In a recent paper (Araya and Harada, 2023), Araya and Harada gave examples of self-dual near-extremal ternary codes of length 48 for 145 distinct values of the number A12 of codewords of minimum weight 12, and raised the question about the existence
Externí odkaz:
https://doaj.org/article/47abb0d0ebd04513b87491ba46c24022
Publikováno v:
Algorithms, Vol 12, Iss 8, p 168 (2019)
A generalization of Ding’s construction is proposed that employs as a defining set the collection of the sth powers ( s ≥ 2 ) of all nonzero elements in G F ( p m ) , where p ≥ 2 is prime. Some of the resulting codes are optimal or near-optimal
Externí odkaz:
https://doaj.org/article/0e029396a3ed4af08f65177b02c079b4
Autor:
Sanja Rukavina, Vladimir D. Tonchev
Publikováno v:
Journal of Algebraic Combinatorics. 57:905-913
In this note we report the classification of all symmetric 2-(36,15,6) designs that admit an automorphism of order 2 and their incidence matrices generate an extremal ternary self-dual code. It is shown that up to isomorphism, there exists only one s
Autor:
Akihiro Munemasa, Vladimir D. Tonchev
Publikováno v:
Applicable Algebra in Engineering, Communication and Computing. 33:855-866
Autor:
Vladimir D. Tonchev
Publikováno v:
Designs, Codes and Cryptography. 90:2753-2762
It is proved that a code $L(q)$ which is monomially equivalent to the Pless symmetry code $C(q)$ of length $2q+2$ contains the (0,1)-incidence matrix of a Hadamard 3-$(2q+2,q+1,(q-1)/2)$ design $D(q)$ associated with a Paley-Hadamard matrix of type I
Autor:
Vladimir D. Tonchev
Publikováno v:
Designs, Codes and Cryptography. 90:1595-1597
Publikováno v:
Designs, Codes and Cryptography. 89:1713-1734
Let $$q=2^m$$ . The projective general linear group $${\mathrm {PGL}}(2,q)$$ acts as a 3-transitive permutation group on the set of points of the projective line. The first objective of this paper is to prove that all linear codes over $${\mathrm {GF
Publikováno v:
Journal of Algebraic Combinatorics. 53:253-261
In this talk we will explain the method for constructing strongly regular graphs. Using the method, twelve new strongly regular graphs with parameters (81, 30, 9, 12) are found as graphs invariant under certain subgroups of the automorphism groups of
Autor:
Akihiro Munemasa, Vladimir D. Tonchev
Publikováno v:
Journal of Combinatorial Designs. 28:745-752
Autor:
Steven T. Dougherty, Gretchen L Matthews, Jay A. Wood, Janet Beissinger, R. Brualdi, Nick Crews, Shmuel Friedland, Xiang-Dong Hou, W Cary Huffman, Jon-Lark Kim, Naomi Pless, Ben Pless, Dan Pless, Patrick Solé, Sarah Spence Adams, Vladimir D. Tonchev, Harold (Thann) Ward, Judy Walker
Publikováno v:
Notices of the American Mathematical Society. 69:1