Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Vladimir D. Stepanov"'
Publikováno v:
Journal of Function Spaces and Applications, Vol 1, Iss 1, Pp 1-15 (2003)
We characterize weighted Lp-Lq inequalities with the Hardy operator of the form Hf(x)=∫a(x)b(x)f(y)u(y) dy with a non-negative weight function u, restricted to the cone of monotone functions on the semiaxis. The proof is based on the Sawyer criteri
Externí odkaz:
https://doaj.org/article/a821a05cde624bb98f2c709870a86bcb
Publikováno v:
Mathematical Inequalities & Applications. :267-288
Publikováno v:
Mathematical Inequalities & Applications. :535-549
Publikováno v:
Research and Reports in Urology
Background We present here the first case of Cowper’s gland abscess complicated by septic shock and breakthrough of the abscess into the paraurethral region, cavernous body, scrotum, and pararectal tissue. Case Presentation A 63-year-old patient wa
Autor:
G. E. Shambilova, Vladimir D. Stepanov
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 312:241-248
We characterize a two-dimensional bilinear inequality with rectangular Hardy operators in weighted norms of Lebesgue spaces.
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 312:251-258
Дана характеризация двумерного билинейного неравенства с прямоугольными операторами Харди в весовых нормах пространств Лебега.
Publikováno v:
Mathematical Inequalities & Applications. :617-634
A characterization is obtained for those pairs of weights $v$ and $w$ on $\mathbb{R}^2_+$, for which the two--dimensional rectangular integration operator is bounded from a weighted Lebesgue space $L^p_v(\mathbb{R}^2_+)$ to $L^q_w(\mathbb{R}^2_+)$ fo
Publikováno v:
Sibirskii matematicheskii zhurnal. 61:913-931
Publikováno v:
Mathematical Inequalities & Applications. :1279-1310
Publikováno v:
Eurasian Mathematical Journal. 11:57-71