Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Vladimir Bashmakov"'
Publikováno v:
Journal of High Energy Physics, Vol 2023, Iss 9, Pp 1-25 (2023)
Abstract It is well-known that six-dimensional superconformal field theories can be exploited to unravel interesting features of lower-dimensional theories obtained via compactifications. In this short note we discuss a new application of 6d (2,0) th
Externí odkaz:
https://doaj.org/article/193d721eb64c47a5b5de70ccf6b325e4
Publikováno v:
Journal of High Energy Physics, Vol 2023, Iss 5, Pp 1-74 (2023)
Abstract We study the non-invertible symmetries of class S $$ \mathcal{S} $$ theories obtained by compactifying the type a p − 1 $$ {\mathfrak{a}}_{p-1} $$ 6d (2,0) theory on a genus g Riemann surface with no punctures. After setting up the general
Externí odkaz:
https://doaj.org/article/a3357f1febaa4deabcd003a35689a84a
Autor:
Vladimir Bashmakov, Nicola Gorini
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 7, Pp 1-41 (2022)
Abstract We consider the IR phases of two-node quiver theories with N $$ \mathcal{N} $$ = 1 supersymmetry in d = 2 + 1 dimensions. It turns out that the discussion splits into two main cases, depending on whether the Chern-Simons levels associated wi
Externí odkaz:
https://doaj.org/article/4727dfcbeb6f4d17b1ef8b8021445820
Publikováno v:
Journal of High Energy Physics, Vol 2018, Iss 7, Pp 1-44 (2018)
Abstract We study the dynamics of 2+1 dimensional theories with N=1 $$ \mathcal{N}=1 $$ supersymmetry. In these theories the supersymmetric ground states behave discontinuously at codimension one walls in the space of couplings, with new vacua coming
Externí odkaz:
https://doaj.org/article/770e30415f29411ba1177f60a5a459b6
Publikováno v:
Journal of High Energy Physics, Vol 2017, Iss 11, Pp 1-26 (2017)
Abstract We discuss the constraints that a conformal field theory should enjoy to admit exactly marginal deformations, i.e. to be part of a conformal manifold. In particular, using tools from conformal perturbation theory, we derive a sum rule from w
Externí odkaz:
https://doaj.org/article/af6229701a594e7e9ea7e29a0e9a3f95
Publikováno v:
SciPost Physics, Vol 6, Iss 4, p 044 (2019)
We study BPS domain walls in four-dimensional $\mathcal{N}=1$ massive SQCD with gauge group $SU(N)$ and $F
Externí odkaz:
https://doaj.org/article/279d207e3d584e02a985e22b47466751
Publikováno v:
SciPost Physics
SciPost Physics, Vol 6, Iss 4, p 044 (2019)
SciPost Physics, Vol 6, Iss 4, p 044 (2019)
We study BPS domain walls in four-dimensional $\mathcal{N}=1$ massive SQCD with gauge group $SU(N)$ and $F
Comment: 47 pages, 6 figures; v2: refs and clarifications added; v3: typos corrected, clarifications added
Comment: 47 pages, 6 figures; v2: refs and clarifications added; v3: typos corrected, clarifications added
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ffcb6376301ea2a2463cac60f27afe3
http://hdl.handle.net/20.500.11767/95574
http://hdl.handle.net/20.500.11767/95574
Publikováno v:
Journal of High Energy Physics
Journal of High Energy Physics, Vol 2017, Iss 11, Pp 1-26 (2017)
Journal of High Energy Physics, Vol 2017, Iss 11, Pp 1-26 (2017)
We discuss the constraints that a conformal field theory should enjoy to admit exactly marginal deformations, i.e. to be part of a conformal manifold. In particular, using tools from conformal perturbation theory, we derive a sum rule from which one
Publikováno v:
Physical Review D. 95
We consider deformations of a conformal field theory that explicitly break some global symmetries of the theory. If the deformed theory is still a conformal field theory, one can exploit the constraints put by conformal symmetry to compute broken cur
Publikováno v:
Journal of High Energy Physics
We consider the coupling of a free scalar to a single-trace operator of a large N CFT in d dimensions. This is equivalent to a double-trace deformation coupling two primary operators of the CFT, in the limit when one of the two saturates the unitarit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c02ca048e09eb054077bdafc3cf7161
http://arxiv.org/abs/1603.00387
http://arxiv.org/abs/1603.00387