Zobrazeno 1 - 10
of 247
pro vyhledávání: '"Vizer Máté"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 42, Iss 4, Pp 1061-1074 (2022)
A subgraph G of H is singular if the vertices of G either have the same degree in H or have pairwise distinct degrees in H. The largest number of edges of a graph on n vertices that does not contain a singular copy of G is denoted by TS(n, G). Caro a
Externí odkaz:
https://doaj.org/article/8e44b12e9869402882a2328dce50e8b9
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 13, Iss 2, Pp 356-366 (2021)
In this short note we consider the oriented vertex Turán problem in the hypercube: for a fixed oriented graph F→\vec F, determine the maximum cardinality exv(F→,Q→n)e{x_v}\left( {\vec F,{{\vec Q}_n}} \right) of a subset U of the vertices of th
Externí odkaz:
https://doaj.org/article/196b2143d9e947bb89e7b2ab57e2b9d6
Autor:
Brešar Boštjan, Bujtás Csilla, Gologranc Tanja, Klavžar Sandi, Košmrlj Gašper, Marc Tilen, Patkós Balázs, Tuza Zsolt, vizer Máté
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 1, Pp 225-247 (2021)
A longest sequence (v1, . . ., vk) of vertices of a graph G is a Grundy total dominating sequence of G if for all i, N(υj)\∪j=1i-1N(υj)≠∅N({\upsilon _j})\backslash \bigcup\nolimits_{j = 1}^{i - 1} {N({\upsilon _j})} \ne \emptyset . The length
Externí odkaz:
https://doaj.org/article/7354b0e5988e4cd6b60942146d69c9ca
We study the following game version of the generalized graph Tur\'an problem. For two fixed graphs F and H, two players, Max and Mini, alternately claim unclaimed edges of the complete graph Kn such that the graph G of the claimed edges must remain F
Externí odkaz:
http://arxiv.org/abs/2404.02288
In this paper, we address problems related to parameters concerning edge mappings of graphs. Inspired by Ramsey's Theorem, the quantity $m(G, H)$ is defined to be the minimum number $n$ such that for every $f: E(K_n) \rightarrow E(K_n)$ either there
Externí odkaz:
http://arxiv.org/abs/2402.01004
In this paper, we address problems related to parameters concerning edge mappings of graphs. The quantity $h(n,G)$ is defined to be the maximum number of edges in an $n$-vertex graph $H$ such that there exists a mapping $f: E(H)\rightarrow E(H)$ with
Externí odkaz:
http://arxiv.org/abs/2402.01006
Publikováno v:
Applicable Analysis and Discrete Mathematics, 2024 Apr 01. 18(1), 193-214.
Externí odkaz:
https://www.jstor.org/stable/27303532
A 1-selection $f$ of a graph $G$ is a function $f: V(G)\rightarrow E(G)$ such that $f(v)$ is incident to $v$ for every vertex $v$. The 1-removed $G_f$ is the graph $(V(G),E(G)\setminus f[V(G)])$. The (1-)robust chromatic number $\chi_1(G)$ is the min
Externí odkaz:
http://arxiv.org/abs/2305.01927
A $q$-graph $H$ on $n$ vertices is a set of vectors of length $n$ with all entries from $\{0,1,\dots,q\}$ and every vector (that we call a $q$-edge) having exactly two non-zero entries. The support of a $q$-edge $\mathbf{x}$ is the pair $S_{\mathbf{x
Externí odkaz:
http://arxiv.org/abs/2305.01919
A 1-removed subgraph $G_f$ of a graph $G=(V,E)$ is obtained by $(i)$ selecting at most one edge $f(v)$ for each vertex $v\in V$, such that $v\in f(v)\in E$ (the mapping $f:V\to E \cup \{\varnothing\}$ is allowed to be non-injective), and $(ii)$ delet
Externí odkaz:
http://arxiv.org/abs/2305.01923