Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Vivina Barutello"'
The goal of the paper is to develop a method that will combine the use of variational techniques with regularization methods in order to study existence and multiplicity results for the periodic and the Dirichlet problem associated to the perturbed K
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cda1b46866ab3c733c074d3ce0c63fb0
http://hdl.handle.net/11311/1165994
http://hdl.handle.net/11311/1165994
The planar N-centre problem describes the motion of a particle moving in the plane under the action of the force fields of N fixed attractive centres: $$\begin{aligned} \ddot{x}(t)=\sum _{j=1}^N\nabla V_j(x(t)-c_j). \end{aligned}$$ x ¨ ( t ) = ∑ j
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::016a6bf0ac7cf37c39f2434b90702f7f
We are concerned with the analysis of finite time collision trajectories for a class of singular anisotropic homogeneous potentials of degree \begin{document}$ -\alpha $\end{document} , with \begin{document}$ \alpha\in(0,2) $\end{document} and their
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65c5687d9ac7868176a9ee50f1452b9d
http://hdl.handle.net/2318/1764257
http://hdl.handle.net/2318/1764257
Classical Sturm non-oscillation and comparison theorems as well as the Sturm theorem on zeros for solutions of second order differential equations have a natural symplectic version, since they describe the rotation of a line in the phase plane of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04c5fe6afde63803f3f02a362d961f7b
http://arxiv.org/abs/2005.08034
http://arxiv.org/abs/2005.08034
Publikováno v:
Advances in Mathematics. 370:107230
We develop an index theory for parabolic and collision solutions to the classical n-body problem and we prove sufficient conditions for the finiteness of the spectral index valid in a large class of trajectories ending with a total collapse or expand
We revisit a classical result by Jacobi (J Reine Angew Math 17:68–82, 1837) on the local minimality, as critical points of the corresponding energy functional, of fixed-energy solutions of the Kepler equation joining two distinct points with the sa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4857aebb0136dac18d0abdbb24154718
Publikováno v:
Archive for Rational Mechanics and Analysis. 219:387-444
It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter $\beta$ and on the eccentricity $e$ of the orbit. We consider only the circular case ($e = 0$) but
We show the existence of infinitely many positive solutions, defined on the real line, for the nonlinear scalar ODE \[ \ddot u + (a^+(t) - ��a^-(t)) u^3 = 0, \] where $a$ is a periodic, sign-changing function, and the parameter $��>0$ is larg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c8bf2e7686c829a51f4b4dc282afdca
http://arxiv.org/abs/1407.1334
http://arxiv.org/abs/1407.1334
Publikováno v:
ResearcherID
For the class of anisotropic Kepler problems in $\RR^d\setminus\{0\}$ with homogeneous potentials, we seek parabolic trajectories having prescribed asymptotic directions at infinity and which, in addition, are Morse minimizing geodesics for the Jacob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7a4ac310f489b402da8a5c89327e5b5
http://hdl.handle.net/2318/127984
http://hdl.handle.net/2318/127984
Following Smale, we study simple symmetric mechanical systems of $n$ point particles in the plane. In particular, we address the question of the linear and spectral stability properties of relative equilibria, which are special solutions of the equat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ffe279cf021f4d691db1dfe6dbd914c0