Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Vivien Mallet"'
Publikováno v:
Atmospheric Environment: X, Vol 10, Iss , Pp 100112- (2021)
In emergency cases, when nuclear accidental releases take place, numerical models, developed by French Institute of Radiation Protection and Nuclear Safety (IRSN), are used to forecast the atmospheric dispersion of radionuclides. These models compute
Externí odkaz:
https://doaj.org/article/9c3928b728d044529f86cd0323b55cd9
Publikováno v:
The Journal of the Acoustical Society of America. 151:390-401
The influence of the ground and atmosphere on sound generation and propagation from wind turbines creates uncertainty in sound level estimations. Realistic simulations of wind turbine noise thus require quantifying the overall uncertainty on sound pr
Publikováno v:
International Journal of Wildland Fire
International Journal of Wildland Fire, 2022, 31 (4), pp.379-394. ⟨10.1071/WF21143⟩
International Journal of Wildland Fire, 2022, 31 (4), pp.379-394. ⟨10.1071/WF21143⟩
Wildfire occurrence and behaviour are difficult to predict locally for the next day. In the present work, we propose relying on fire spread simulations to provide a fire danger index representative of the potential for fire spread that includes not o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c83f810f70516d65fe124cb0b11f5ff
https://inria.hal.science/hal-03189847/file/paper.pdf
https://inria.hal.science/hal-03189847/file/paper.pdf
Publikováno v:
The Journal of the Acoustical Society of America. 149(6)
This study aims to produce dynamic noise maps based on a noise model and acoustic measurements. To do so, inverse modeling and joint state-parameter methods are proposed. These methods estimate the input parameters that optimize a given cost function
Publikováno v:
Neural Networks
Neural Networks, Elsevier, 2021, 141, pp.184-198. ⟨10.1016/j.neunet.2021.04.006⟩
Neural Networks, Elsevier, 2021, 141, pp.184-198. ⟨10.1016/j.neunet.2021.04.006⟩
Numerical simulation of wildland fire spread is useful to predict the locations that are likely to burn and to support decision in an operational context, notably for crisis situations and long-term planning. For short-term, the computational time of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee5f575520be11578c1492aa0c2bf923
https://hal.inria.fr/hal-03142281/file/paper.pdf
https://hal.inria.fr/hal-03142281/file/paper.pdf
Publikováno v:
Applied Mathematical Modelling
Applied Mathematical Modelling, Elsevier, 2021, 90, pp.527-546. ⟨10.1016/j.apm.2020.08.040⟩
Applied Mathematical Modelling, 2021, 90, pp.527-546. ⟨10.1016/j.apm.2020.08.040⟩
Applied Mathematical Modelling, Elsevier, 2021, 90, pp.527-546. ⟨10.1016/j.apm.2020.08.040⟩
Applied Mathematical Modelling, 2021, 90, pp.527-546. ⟨10.1016/j.apm.2020.08.040⟩
International audience; Simulation is used to predict the spread of a wildland fire across land in real-time. Nevertheless, the large uncertainties in these simulations must be quantified in order to provide better information to fire managers. Ensem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d183b76c2af24c60332ed249c05f9c98
https://hal.inria.fr/hal-02957983
https://hal.inria.fr/hal-02957983
Publikováno v:
International Journal of Forecasting
International Journal of Forecasting, Elsevier, 2018, 34 (4), pp.762-773. ⟨10.1016/j.ijforecast.2018.05.007⟩
International Journal of Forecasting, 2018, 34 (4), pp.762-773. ⟨10.1016/j.ijforecast.2018.05.007⟩
International Journal of Forecasting, Elsevier, 2018, 34 (4), pp.762-773. ⟨10.1016/j.ijforecast.2018.05.007⟩
International Journal of Forecasting, 2018, 34 (4), pp.762-773. ⟨10.1016/j.ijforecast.2018.05.007⟩
International audience; We provide probabilistic forecasts of photovoltaic (PV) production, for several PV plants located in France up to 6 days of lead time, with a 30-min timestep. First, we derive multiple forecasts from numerical weather predicti
Publikováno v:
Applied Acoustics. 178:107938
Accurately predicting dynamic noise levels in urban environments is non-trivial. This study aims to optimally combine both simulated and empirical data. Acoustic data from microphone arrays, traffic and weather data was merged with a simulated noise
Publikováno v:
Cities & Health
Cities & Health, Taylor & Francis, 2019, ⟨10.1080/23748834.2019.1617656⟩
Cities & Health, 2019, ⟨10.1080/23748834.2019.1617656⟩
Cities & Health, Taylor & Francis, 2019, ⟨10.1080/23748834.2019.1617656⟩
Cities & Health, 2019, ⟨10.1080/23748834.2019.1617656⟩
International audience; Environmental noise is a major pollutant in contemporary cities and calls for the ac-10 tive monitoring of noise levels to spot the locations where it most affects the people's health and well-being. However, due to the comple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19c8127dc599a88e74667069a3154312
https://hal.inria.fr/hal-02127052v2/document
https://hal.inria.fr/hal-02127052v2/document
Publikováno v:
Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019).