Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Viveka Erlandsson"'
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to r
Externí odkaz:
https://doaj.org/article/0bcb7bf2f0c94eefbf8e6e0c71bc2364
Autor:
Juan Souto, Viveka Erlandsson
Publikováno v:
Ergodic Theory and Dynamical Systems
Ergodic Theory and Dynamical Systems, 2022, ⟨10.1017/etds.2021.166⟩
Ergodic Theory and Dynamical Systems, 2022, ⟨10.1017/etds.2021.166⟩
Recall that two geodesics in a negatively curved surface $S$ are of the same type if their free homotopy classes differ by a homeomorphism of the surface. In this note we study the distribution in the unit tangent bundle of the geodesics of fixed typ
Publikováno v:
Commentarii Mathematici Helvetici. 96:421-463
We give a complete characterization of the relationship between the shape of a Euclidean polygon and the symbolic dynamics of its billiard flow. We prove that the only pairs of tables that can have the same bounce spectrum are right-angled tables tha
Autor:
Viveka Erlandsson, Gabriele Mondello
Publikováno v:
Erlandsson, V & Mondello, G 2022, ' Ergodic invariant measure on the space of geodesic currents ', Annales de l'institut Fourier, vol. 72, no. 6, pp. 2449-2513 . https://doi.org/10.5802/aif.3498
Let $S$ be a compact, connected, oriented surface, possibly with boundary, of negative Euler characteristic. In this article we extend Lindenstrauss-Mirzakhani's and Hamenst\"adt's classification of locally finite mapping class group invariant ergodi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9a7addbf59a6f5307e1652402618811
https://hdl.handle.net/10037/28288
https://hdl.handle.net/10037/28288
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Progress in Mathematics ISBN: 9783031087042
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fe93be4bc8e0f8cb9ccf9d3e12e513ca
https://doi.org/10.1007/978-3-031-08705-9_12
https://doi.org/10.1007/978-3-031-08705-9_12
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Progress in Mathematics ISBN: 9783031087042
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::17613224f2f17e0e65717461a43a0efa
https://doi.org/10.1007/978-3-031-08705-9_8
https://doi.org/10.1007/978-3-031-08705-9_8
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Progress in Mathematics ISBN: 9783031087042
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a92650d1c7f5fd340a8dfe3355d941c9
https://doi.org/10.1007/978-3-031-08705-9_5
https://doi.org/10.1007/978-3-031-08705-9_5
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Progress in Mathematics ISBN: 9783031087042
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3c28c420078e4bfbcff3c558efec8ab3
https://doi.org/10.1007/978-3-031-08705-9_4
https://doi.org/10.1007/978-3-031-08705-9_4
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Progress in Mathematics ISBN: 9783031087042
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d30a9c23352ffc76c0a18b267368ccc4
https://doi.org/10.1007/978-3-031-08705-9_10
https://doi.org/10.1007/978-3-031-08705-9_10
Autor:
Viveka Erlandsson, Juan Souto
Publikováno v:
Progress in Mathematics ISBN: 9783031087042
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1f96338d66d2c2241dfdca95db39e0be
https://doi.org/10.1007/978-3-031-08705-9_3
https://doi.org/10.1007/978-3-031-08705-9_3