Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Vitturi, Marco"'
Autor:
Bakas, Odysseas, Ciccone, Valentina, Di Plinio, Francesco, Fraccaroli, Marco, Parissis, Ioannis, Vitturi, Marco
Given an Orlicz space $ L^2 \subseteq X \subseteq L^1$ on $[0,1]$, with submultiplicative Young function ${\mathrm{Y}_X}$, we fully characterize the closed null sets $\Xi$ of the real line with the property that H\"ormander-Mihlin or Marcinkiewicz mu
Externí odkaz:
http://arxiv.org/abs/2406.17521
We consider Marcinkiewicz multipliers of any lacunary order defined by means of uniformly bounded variation on each lacunary Littlewood--Paley interval of some fixed order $\tau\geq 1$. We prove the optimal endpoint bounds for such multipliers as a c
Externí odkaz:
http://arxiv.org/abs/2401.06083
Autor:
Crowley, Conrad, Vitturi, Marco
We use polynomial method techniques to bound the number of tangent pairs in a collection of $N$ spheres in $\mathbb{R}^n$ subject to a non-degeneracy condition, for any $n \geq 3$. The condition, inspired by work of Zahl for $n=3$, asserts that on an
Externí odkaz:
http://arxiv.org/abs/2301.06414
We draw a connection between the affine invariant surface measures constructed by P. Gressman and the boundedness of a certain geometric averaging operator associated to surfaces of codimension $2$ and related to the Fourier Restriction Problem for s
Externí odkaz:
http://arxiv.org/abs/2209.15530
Publikováno v:
In Advances in Mathematics December 2024 458 Part A
In this paper we introduce the class of bilinear Hilbert--Carleson operators $\{BC^a\}_{a>0}$ defined by $$ BC^{a}(f,g)(x):= \sup_{\lambda\in {\mathbb R}} \Big|\int f(x-t)\, g(x+t)\, e^{i\lambda t^a} \, \frac{dt}{t} \Big| $$ and show that in the non-
Externí odkaz:
http://arxiv.org/abs/2106.09697
We apply Christ's method of refinements to the $\ell^p$-improving problem for discrete averages $\mathcal{A}_N$ along polynomial curves in $\mathbb{Z}^d$. Combined with certain elementary estimates for the number of solutions to certain special syste
Externí odkaz:
http://arxiv.org/abs/2012.06247
Autor:
Vitturi, Marco
We provide an L² theory for the local double Hilbert transform along an analytic surface (s, t, φ(s, t )) in the Heisenberg group H¹, that is operator f ↦ Hφ f (x) := p.v.∫∣s∣,∣t∣≤1 f (x ∙ (s, t, φ(s, t ))-¹) ds/s dt/t, where
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.726611
Autor:
Vitturi, Marco, Wright, James
We consider a class of multiparameter singular Radon integral operators on the Heisenberg group ${\mathbb H}^1$ where the underlying variety is the graph of a polynomial. A remarkable difference with the euclidean case, where Heisenberg convolution i
Externí odkaz:
http://arxiv.org/abs/1808.10368
Autor:
Bernicot, Frédéric, Vitturi, Marco
Let $\mathscr{R}$ be a collection of disjoint dyadic rectangles $R$ with sides parallel to the axes, let $\pi_R$ denote the non-smooth bilinear projection onto $R$ \[ \pi_R (f,g)(x):=\iint \mathbf{1}_{R}(\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e
Externí odkaz:
http://arxiv.org/abs/1808.06534