Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Vittoria Sposini"'
Autor:
Vittoria Sposini, Diego Krapf, Enzo Marinari, Raimon Sunyer, Felix Ritort, Fereydoon Taheri, Christine Selhuber-Unkel, Rebecca Benelli, Matthias Weiss, Ralf Metzler, Gleb Oshanin
Publikováno v:
Communications Physics, Vol 5, Iss 1, Pp 1-10 (2022)
Anomalous-diffusion identifies the departure of diffusive dynamics from the traditional Brownian-motion and is a signature feature of a large number of complex soft-matter and biological systems. This article reports an analysis of an easy to impleme
Externí odkaz:
https://doaj.org/article/16a7e893300b49b480271a1035dc62ca
Publikováno v:
New Journal of Physics, Vol 23, Iss 2, p 023014 (2021)
We study the extremal properties of a stochastic process x _t defined by the Langevin equation ${\dot {x}}_{t}=\sqrt{2{D}_{t}}\enspace {\xi }_{t}$ , in which ξ _t is a Gaussian white noise with zero mean and D _t is a stochastic ‘diffusivity’, d
Externí odkaz:
https://doaj.org/article/d339e72931de4b7384053c9f7376351f
Publikováno v:
New Journal of Physics, Vol 22, Iss 6, p 063056 (2020)
Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of these models typically focus on the moments and the dis
Externí odkaz:
https://doaj.org/article/00f06ca8607745b29e02b4c7042bbcb5
Publikováno v:
New Journal of Physics, Vol 21, Iss 7, p 073043 (2019)
A standard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observ
Externí odkaz:
https://doaj.org/article/a81db0102b654854bd0e1f9180f2bd44
Publikováno v:
New Journal of Physics, Vol 20, Iss 4, p 043044 (2018)
A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function
Externí odkaz:
https://doaj.org/article/c819029ca1d44a9f9db7b0333e9f6ae3
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 55:324003
Lennard–Jones mixtures represent one of the popular systems for the study of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated) events are at the heart of the slow dynamics typical of these systems. Such slow dynamics is char
Publikováno v:
SEMA SIMAI Springer Series ISBN: 9783030692353
Nonlocal and Fractional Operators, edited by Beghin L., Mainardi F., Garrappa R., pp. 275–286, 2021
info:cnr-pdr/source/autori:Sposini V.; Vitali S.; Paradisi P.; Pagnini G./titolo:Fractional diffusion and medium heterogeneity: the case of the continuous time random walk/titolo_volume:Nonlocal and Fractional Operators/curatori_volume:Beghin L., Mainardi F., Garrappa R./editore:/anno:2021
Nonlocal and Fractional Operators, edited by Beghin L., Mainardi F., Garrappa R., pp. 275–286, 2021
info:cnr-pdr/source/autori:Sposini V.; Vitali S.; Paradisi P.; Pagnini G./titolo:Fractional diffusion and medium heterogeneity: the case of the continuous time random walk/titolo_volume:Nonlocal and Fractional Operators/curatori_volume:Beghin L., Mainardi F., Garrappa R./editore:/anno:2021
In this contribution, we show that fractional diffusion emerges from a simple Markovian Gaussian random walk when the medium displays a power-law heterogeneity. Within the framework of the continuous-time random walk, the heterogeneity of the medium
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::569c319a3cb7995f99f7d611fcf7db04
https://doi.org/10.1007/978-3-030-69236-0_14
https://doi.org/10.1007/978-3-030-69236-0_14
Autor:
Silvia Vitali, Mirko D'Ovidio, Paolo Paradisi, Oleksii Sliusarenko, Gastone Castellani, Vittoria Sposini, Gianni Pagnini
Publikováno v:
Fractional Calculus & Applied Analysis
21 (2018): 1420–1435. doi:10.1515/fca-2018-0074
BIRD: BCAM's Institutional Repository Data
instname
info:cnr-pdr/source/autori:D'Ovidio M.; Vitali S.; Sposini V.; Sliusarenko O.; Paradisi P.; Castellani G.; Pagnini G./titolo:Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion/doi:10.1515%2Ffca-2018-0074/rivista:Fractional Calculus & Applied Analysis (Print)/anno:2018/pagina_da:1420/pagina_a:1435/intervallo_pagine:1420–1435/volume:21
21 (2018): 1420–1435. doi:10.1515/fca-2018-0074
BIRD: BCAM's Institutional Repository Data
instname
info:cnr-pdr/source/autori:D'Ovidio M.; Vitali S.; Sposini V.; Sliusarenko O.; Paradisi P.; Castellani G.; Pagnini G./titolo:Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion/doi:10.1515%2Ffca-2018-0074/rivista:Fractional Calculus & Applied Analysis (Print)/anno:2018/pagina_da:1420/pagina_a:1435/intervallo_pagine:1420–1435/volume:21
We consider an ensemble of Ornstein–Uhlenbeck processes featuring a population of relaxation times and a population of noise amplitudes that characterize the heterogeneity of the ensemble. We show that the centre-of-mass like variable corresponding
Autor:
Silvia Vitali, Gianni Pagnini, Aleksei V. Chechkin, Paolo Paradisi, Oleksii Sliusarenko, Gastone Castellani, Vittoria Sposini
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
Journal of physics. A, Mathematical and theoretical
52 (2019). doi:10.1088/1751-8121/aafe90
info:cnr-pdr/source/autori:Sliusarenko O. Y.; Vitali S.; Sposini V.; Paradisi P.; Chechkin A.; Castellani G.; Pagnini G./titolo:Finite-energy Levy-type motion through heterogeneous ensemble of Brownian particles/doi:10.1088%2F1751-8121%2Faafe90/rivista:Journal of physics. A, Mathematical and theoretical (Print)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume:52
instname
Journal of physics. A, Mathematical and theoretical
52 (2019). doi:10.1088/1751-8121/aafe90
info:cnr-pdr/source/autori:Sliusarenko O. Y.; Vitali S.; Sposini V.; Paradisi P.; Chechkin A.; Castellani G.; Pagnini G./titolo:Finite-energy Levy-type motion through heterogeneous ensemble of Brownian particles/doi:10.1088%2F1751-8121%2Faafe90/rivista:Journal of physics. A, Mathematical and theoretical (Print)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume:52
Complex systems are known to display anomalous diffusion, whose signature is a space/time scaling $x \sim t^\delta$ with $\delta \neq 1/2$ in the probability density function (PDF). Anomalous diffusion can emerge jointly with both Gaussian, e.g. frac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10627cdc0da01f34e87a5b3b2fb897b9
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/50178
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/50178
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 52:04LT01
A rapidly increasing number of systems is identified in which the stochastic motion of tracer particles follows the Brownian law $\langle\mathbf{r}^2(t) \rangle\simeq Dt$ yet the distribution of particle displacements is strongly non-Gaussian. A cent