Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Vitor M. de Oliveira"'
Autor:
Vitor M. de Oliveira
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Invariant manifolds are the skeleton of the chaotic dynamics in Hamiltonian systems. In Celestial Mechanics, these geometrical structures are applied to a multitude of physical and practical problems, such as to the description of the natural transpo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46f79c2fa2d7313e7284512aa67c5ac5
https://doi.org/10.11606/t.43.2021.tde-12052021-152814
https://doi.org/10.11606/t.43.2021.tde-12052021-152814
Autor:
Flávio O. Sanches-Neto, Jefferson R. Dias-Silva, Vitor M. de Oliveira, Vincenzo Aquilanti, Valter H. Carvalho-Silva
Publikováno v:
Atmospheric Environment. 275:119019
Autor:
Rafael D. Vilela, Vitor M. de Oliveira
Publikováno v:
The European Physical Journal Special Topics. 226:2079-2088
We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single par
Publikováno v:
Scopus
Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Repositório Institucional da UNESP
Universidade Estadual Paulista (UNESP)
instacron:UNESP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
In this work, we investigate the Earth-Moon system, as modeled by the planar circular restricted three-body problem, and relate its dynamical properties to the underlying structure associated with specific invariant manifolds. We consider a range of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab6e00d638bc619e75d2346d92b65c83
Stickiness is a well known phenomenon in which chaotic orbits expend an expressive amount of time in specific regions of the chaotic sea. This phenomenon becomes important when dealing with area-preserving open systems because, in this case, it leads
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::843acbbbdf04021bfb1e99002b65388e
http://arxiv.org/abs/1907.11616
http://arxiv.org/abs/1907.11616