Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Vitalii V Fedorchuk"'
Autor:
Vitalii V Fedorchuk
Publikováno v:
Russian Mathematical Surveys. 62:323-374
In this survey article two new classes of spaces are considered: --spaces and ---spaces, . They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of -spaces. The classes of --spaces and --
Autor:
Vitalii V Fedorchuk
Publikováno v:
Uspekhi Matematicheskikh Nauk. 62:109-164
Autor:
Vitalii V Fedorchuk
Publikováno v:
Matematicheskie Zametki. 73:295-304
Autor:
Vitalii V Fedorchuk
Publikováno v:
Russian Mathematical Surveys. 57:361-398
This survey is devoted to problems in dimension theory related to the works of Smirnov. New results concern the dimensions of subsets of manifolds. Under the continuum hypothesis we construct two infinite-dimensional 4-manifolds. The first is a manif
Autor:
Sergei Petrovich Novikov, Evgenii Frolovich Mishchenko, Vitalii V Fedorchuk, Mikhail Mikhailovich Postnikov, Evgenii Grigor'evich Sklyarenko, Victor Matveevich Buchstaber, Arkadii Anatol'evich Mal'tsev, Aleksandr Vladimirovich Zarelua, V I Ponomarev, Elena Aleksandrovna Morozova
Publikováno v:
Uspekhi Matematicheskikh Nauk. 57:203-207
Autor:
Vitalii V Fedorchuk
Publikováno v:
Uspekhi Matematicheskikh Nauk. 57:139-178
Autor:
Vitalii V Fedorchuk
Publikováno v:
Izvestiya: Mathematics. 63:827-843
We prove that the functors and of Radon and -additive probability measures, respectively, preserve neither the real-completeness nor the Dieudonne completeness of Tychonoff spaces. We suggest conditions under which Martin's axiom implies that preserv
Autor:
Vitalii V Fedorchuk
Publikováno v:
Известия Российской академии наук. Серия математическая. 63:207-223
Autor:
Vitalii V Fedorchuk
Publikováno v:
Russian Mathematical Surveys. 53:937-974
ContentsIntroduction § 1. The Urysohn identity § 2. Non-metrizable manifolds § 3. On the dimension of manifolds Bibliography
Autor:
Vitalii V Fedorchuk
Publikováno v:
Mathematics of the USSR-Izvestiya. 36:411-433
The concepts of metrizable, uniformly metrizable, and perfectly metrizable functors are introduced. The triple , , of infinite iterates of a perfectly metrizable functor is defined. The geometric properties of such triples are investigated for the co