Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Vit. V. Volchkov"'
Autor:
N. P. Volchkova, Vit. V. Volchkov
Publikováno v:
Проблемы анализа, Vol Том 12 (30), Iss 1, Pp 96-117 (2023)
Various issues related to restrictions on radii in meanvalue formulas are well-known in the theory of harmonic functions. In particular, using the Brown-Schreiber-Taylor theorem on spectral synthesis for motion-invariant subspaces in 𝐶(R^𝑛), o
Externí odkaz:
https://doaj.org/article/e7fdbb1dc93748f382b4d5f62c3e8a21
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Проблемы анализа, Vol 11 (29), Iss 3, Pp 125-142 (2022)
The article for the first time studies the approximation of a function together with its derivatives on the real line by solutions of a multidimensional convolution equation of the form 𝑔 * 𝑇 = 0, where 𝑇 is a given compactly supported rad
Externí odkaz:
https://doaj.org/article/ae57e43d7a0f45308d38773432c48381
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Проблемы анализа, Vol 10 (28), Iss 3, Pp 129-140 (2021)
Let 𝑛 >= 2, 𝑉_𝑟(R^𝑛) be the set of functions with zero integrals over all balls in R^𝑛 of radius 𝑟. Various interpolation problems for the class 𝑉_𝑟(R^𝑛) are studied. In the case when the set of interpolation nodes is finit
Externí odkaz:
https://doaj.org/article/d331d5b073254c539a220e2ffda80d23
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Проблемы анализа, Vol 9 (27), Iss 2, Pp 138-151 (2020)
This paper is devoted to a study of the following version of the mean periodic extension problem: (i) Suppose that 𝑇 ∈ ℰ′ (R^𝑛), 𝑛 ≥ 2, and 𝐸 is a non-empty subset of R^𝑛. Let 𝑓 ∈ 𝐶(𝐸). What conditions guarantee t
Externí odkaz:
https://doaj.org/article/524e9fb845914c6bbfe3241a39fb8a4b
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Mathematical Notes. 113:49-58
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Siberian Mathematical Journal. 64:48-55
Autor:
Vit. V. Volchkov
Publikováno v:
Issues of Analysis. 28:129-140
Continuous Extension of Functions from a Segment to Functions in $\mathbb{R}^n$ with Zero Ball Means
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Russian Mathematics. 65:1-11
Let $\mathbb{R}^n$ be a Euclidean space of dimension $n\geq 2$ . For a domain $G\subset \mathbb{R}^n$ , we denote by $V_r(G)$ the set of functions $f\in L_{\mathrm{loc}}(G)$ having zero integrals over all closed balls of radius r contained in G (if d
Autor:
V. V. Volchkov, Vit. V. Volchkov
Publikováno v:
Doklady Mathematics. 103:14-18
We study the following version of the mean periodic extension problem. (i) Suppose that $$T \in \mathcal{E}'({{\mathbb{R}}^{n}})$$ , n ≥ 2, and E is a nonempty closed subset of $${{\mathbb{R}}^{n}}$$ . What conditions guarantee that, for a function
Autor:
Vit. V. Volchkov, V. V. Volchkov
Publikováno v:
Russian Mathematics. 64:9-19
Let $\Gamma$ be a closed smooth Jordan curve in the complex plane $\mathbb{C}$ ,G be a bounded domain in $\mathbb{C}$ with the boundary $\Gamma$ , and let $\overline{G}=G\cup\Gamma$ . We study functions that are continuous in $\mathbb{C}\setminus G$