Zobrazeno 1 - 10
of 1 524
pro vyhledávání: '"Visual surveillance"'
Publikováno v:
Software, Vol 3, Iss 2, Pp 227-249 (2024)
This study introduces a novel framework, “Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)”, to address an Unsupervised Domain Adaptation (UDA) for Person Re-identific
Externí odkaz:
https://doaj.org/article/2905f436c60d4f2a93a25909cba8edaf
Publikováno v:
IEEE Access, Vol 12, Pp 184028-184039 (2024)
Group detection is a critical yet challenging task in video-based applications such as surveillance analysis, especially in crowded and dynamic environments where complex pedestrian interactions occur. Traditional trajectory-based methods often strug
Externí odkaz:
https://doaj.org/article/b56c1a00fa864e1f842d03d991d7b08b
Autor:
Jae-Yeul Kim, Jong-Eun Ha
Publikováno v:
IEEE Access, Vol 11, Pp 145551-145565 (2023)
Visual surveillance requires robust detection of foreground objects under challenging environments of abrupt lighting variation, stationary foreground objects, dynamic background objects, and severe weather conditions. Most classical algorithms lever
Externí odkaz:
https://doaj.org/article/0cee51602ba44baf89c00ab6a86020fe
Autor:
Wu, Lifang, Liu, Zechao, Guan, Yupeng, Cui, Kejian, Jian, Meng, Qin, Yuanyuan, Li, Yandong, Yang, Feng, Yang, Tianqin
Publikováno v:
Rapid Prototyping Journal, 2021, Vol. 27, Issue 10, pp. 1776-1790.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/RPJ-03-2020-0056
Autor:
Park, Sowon S., author
Publikováno v:
Policing Literary Theory. :73-88
Autor:
Majerova, Jana, Pera, Aurel
Publikováno v:
Review of Contemporary Philosophy. (21):105-121
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1071092
Autor:
Zitouni M. Sami, Śluzek Andrzej
Publikováno v:
International Journal of Applied Mathematics and Computer Science, Vol 32, Iss 1, Pp 81-94 (2022)
The paper discusses a non-deterministic model for data association tasks in visual surveillance of crowds. Using detection and tracking of crowd components (i.e., individuals and groups) as baseline tools, we propose a simple algebraic framework for
Externí odkaz:
https://doaj.org/article/f00623022f0d4c579485def1dd7c4d41
Publikováno v:
IET Cyber-systems and Robotics, Vol 4, Iss 1, Pp 38-50 (2022)
Abstract This paper considers the problem of long‐term target tracking in complex scenes when tracking failures are unavoidable due to illumination change, target deformation, scale change, motion blur, and other factors. More specifically, a targe
Externí odkaz:
https://doaj.org/article/7524042876914cb2a15f27f3be0d1ebb
Autor:
Jae-Yeul Kim, Jong-Eun Ha
Publikováno v:
IEEE Access, Vol 10, Pp 122857-122869 (2022)
Object detection generally shows promising results only using spatial information, but foreground object detection in visual surveillance requires proper use of temporal information in addition to spatial information. Recently, deep learning-based vi
Externí odkaz:
https://doaj.org/article/a9864dd956f94114a4ed08c4489f161e
Autor:
Jae-Yeul Kim, Jong-Eun Ha
Publikováno v:
IEEE Access, Vol 10, Pp 105726-105733 (2022)
In visual surveillance, deep learning-based foreground object detection algorithms are superior to classical background subtraction (BGS)-based algorithms. However, deep learning-based methods are limited because detection performance deteriorates in
Externí odkaz:
https://doaj.org/article/b71acd45be0f4b54bdeb61ad0d0bb648