Zobrazeno 1 - 10
of 338
pro vyhledávání: '"Vision Applications and Systems"'
Publikováno v:
IEEE Access, Vol 8, Pp 189673-189683 (2020)
In this paper, a noise-immune Bat-inspired Graphical visualization network Guided by the radiated ultrasonic call (Bat-G2 net) that can reconstruct 3D shapes of a target from ultrasonic echoes is presented. The Bat-G2 net achieves noise-resiliency by
Externí odkaz:
https://doaj.org/article/e52a715161a24390a9f7e96816d8d700
Autor:
Ruta, Dan, Gilbert, Andrew, Aggarwal, Pranav, Marri, Naveen, Kale, Ajinkya, Briggs, Jo, Speed, Chris, Jin, Hailin, Faieta, Baldo, Filipkowski, Alex, Lin, Zhe, Collomosse, John
Publikováno v:
Ruta, D, Gilbert, A, Aggarwal, P, Marri, N, Kale, A, Briggs, J, Speed, C, Jin, H, Faieta, B, Filipkowski, A, Lin, Z & Collomosse, J 2022, StyleBabel : Artistic style tagging and captioning . in S Avidan, G Brostow, M Cissé & G M Farinella (eds), Computer Vision – ECCV 2022 . Lecture Notes in Computer Science, pp. 219-236, European Conference on Computer Vision 2022, Tel Aviv, Israel, 23/10/22 . https://doi.org/10.1007/978-3-031-20074-8_13
We present StyleBabel, a unique open access dataset of natural language captions and free-form tags describing the artistic style of over 135K digital artworks, collected via a novel participatory method from experts studying at specialist art and de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3094::bac60c0d43d9441109053726719c6ede
https://www.pure.ed.ac.uk/ws/files/289807467/RutaEtal2022ECCVStyleBabelArtisticStyleTagging.pdf
https://www.pure.ed.ac.uk/ws/files/289807467/RutaEtal2022ECCVStyleBabelArtisticStyleTagging.pdf
Human Pose Estimation (HPE) aims at retrieving the 3D position of human joints from images or videos. We show that current 3D HPE methods suffer a lack of viewpoint equivariance, namely they tend to fail or perform poorly when dealing with viewpoints
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b63ef7b2b93185a7bb2e474bd3ad2fc
http://arxiv.org/abs/2108.08557
http://arxiv.org/abs/2108.08557
This work presents SkinningNet, an end-to-end Two-Stream Graph Neural Network architecture that computes skinning weights from an input mesh and its associated skeleton, without making any assumptions on shape class and structure of the provided mesh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be639be7277d80365f1a0bdb06ca3f41
http://arxiv.org/abs/2203.04746
http://arxiv.org/abs/2203.04746
Autor:
Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, Mubarak Shah
Publikováno v:
Ristea, N, Madan, N, Ionescu, R T, Nasrollahi, K, Shahbaz Khan, F, Moeslund, T B & shah, M 2022, Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection . in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . IEEE, I E E E Conference on Computer Vision and Pattern Recognition. Proceedings, pp. 13566-13576, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, United States, 18/06/2022 . https://doi.org/10.1109/CVPR52688.2022.01321
Anomaly detection is commonly pursued as a one-class classification problem, where models can only learn from normal training samples, while being evaluated on both normal and abnormal test samples. Among the successful approaches for anomaly detecti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10742e9669843938682341a528b99960
http://arxiv.org/abs/2111.09099
http://arxiv.org/abs/2111.09099
Publikováno v:
IEEE Access, Vol 8, Pp 189673-189683 (2020)
In this paper, a noise-immune Bat-inspired Graphical visualization network Guided by the radiated ultrasonic call (Bat-G2 net) that can reconstruct 3D shapes of a target from ultrasonic echoes is presented. The Bat-G2 net achieves noise-resiliency by
Autor:
Ries Uittenbogaard, Clint Sebastian, Julien Vijverberg, Bas Boom, Dariu M. Gavrila, Peter H.N. de With
Publikováno v:
13th IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR2019), 10573-10582
STARTPAGE=10573;ENDPAGE=10582;TITLE=13th IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR2019)
Proceedings IEEE Computer Vision and Pattern Recognition (CVPR 2019)
CVPR
STARTPAGE=10573;ENDPAGE=10582;TITLE=13th IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR2019)
Proceedings IEEE Computer Vision and Pattern Recognition (CVPR 2019)
CVPR
The current paradigm in privacy protection in street-view images is to detect and blur sensitive information. In this paper, we propose a framework that is an alternative to blurring, which automatically removes and inpaints moving objects (e.g. pede
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fee20c6bc258edb3fb0b4518c6b127de
https://research.tue.nl/nl/publications/6f89a162-f988-4636-993e-80ca7a2eebbc
https://research.tue.nl/nl/publications/6f89a162-f988-4636-993e-80ca7a2eebbc
Publikováno v:
CVPR
Video summarization is a technique to create a short skim of the original video while preserving the main stories/content. There exists a substantial interest in automatizing this process due to the rapid growth of the available material. The recent
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d2f796e11a860c8adb5725ad6e63675
http://urn.fi/urn:nbn:fi-fe202003238864
http://urn.fi/urn:nbn:fi-fe202003238864
Publikováno v:
CVPR
The applicability of computer vision to real paintings and artworks has been rarely investigated, even though a vast heritage would greatly benefit from techniques which can understand and process data from the artistic domain. This is partially due
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed0b6f3173d5f62eee2b891832f33231
http://arxiv.org/abs/1811.10666
http://arxiv.org/abs/1811.10666
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.