Zobrazeno 1 - 10
of 198
pro vyhledávání: '"Visinescu, Mihai"'
Autor:
Visinescu, Mihai
Publikováno v:
Mod. Phys. Lett. A 35 (2020) 2050114
We analyze the transverse K\"{a}hler-Ricci flow equation on Sasaki-Ein\-stein space $Y^{p,q}$. Explicit solutions are produced representing new five-dimensional Sasaki structures. Solutions which do not modify the transverse metric preserve the Sasak
Externí odkaz:
http://arxiv.org/abs/1910.12495
Publikováno v:
Rom. Rep. Phys. 72 (2020) 108
In this paper we investigate the possibility to obtain locally new Sasaki-Einstein metrics on the space $T^{1,1}$ considering a deformation of the standard metric tensor field. We show that from the geometric point of view this deformation leaves tra
Externí odkaz:
http://arxiv.org/abs/1905.05024
Autor:
Visinescu, Mihai
Publikováno v:
Mod. Phys. Lett. A 33 (2018) 1850107
Methods of Hamiltonian dynamics are applied to study the geodesic flow on the resolved conifolds over Sasaki-Einstein space $T^{1,1}$. We construct explicitly the constants of motion and prove complete integrability of geodesics in the five-dimension
Externí odkaz:
http://arxiv.org/abs/1802.01304
Autor:
Visinescu, Mihai
In this paper we are concerned with completely integrable Hamiltonian systems in the setting of contact geometry. Unlike the symplectic case, contact structures are automatically Hamiltonian. Using the Jacobi brackets defined on contact manifolds, we
Externí odkaz:
http://arxiv.org/abs/1704.04034
Autor:
Visinescu, Mihai
Publikováno v:
Prog. Theor. Exp. Phys. 2017, 013A01 (10 pages)
We use the action-angle variables to describe the geodesic motions in the $5$-dimensional Sasaki-Einstein spaces $Y^{p,q}$. This formulation allows us to study thoroughly the complete integrability of the system. We find that the Hamiltonian involves
Externí odkaz:
http://arxiv.org/abs/1611.01275
Autor:
Visinescu, Mihai
Publikováno v:
Eur. Phys. J. C 76 (2016) 498
We briefly describe the construction of St\"{a}\-kel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing
Externí odkaz:
http://arxiv.org/abs/1604.03705
Publikováno v:
Annals of Physics 361 (2015) 548--562
In the present paper we show that the complete list of special Killing forms on the 5-dimensional Sasaki-Einstein spaces $Y^{p,q}$ can be extracted using the symplectic potential and the classical Delzant construction. The results achieved here agree
Externí odkaz:
http://arxiv.org/abs/1506.04483
Publikováno v:
Mod. Phys. Lett. A, Vol. 30, No. 33 (2015) 1550180
We construct explicitly the constants of motion for geodesics in the $5$-dimensional Sasaki-Einstein spaces $Y^{p,q}$. To carry out this task we use the knowledge of the complete set of Killing vectors and Killing-Yano tensors on these spaces. In spi
Externí odkaz:
http://arxiv.org/abs/1505.03976
Publikováno v:
Rom. Journ. Phys. 61 (2016) 260-275
Throughout this paper we investigate the complex structure of the conifold $C(T^{1,1})$ basically making use of the interplay between symplectic and complex approaches of the K\"{a}hler toric manifolds. The description of the Calabi-Yau manifold $C(T
Externí odkaz:
http://arxiv.org/abs/1503.00443
Publikováno v:
Phys. Scr. 89 (2014) 125205
In this paper we study the interplay between complex coordinates on the Calabi-Yau metric cone and the special Killing forms on the toric Sasaki-Einstein manifold. In the general case we give a procedure to locally construct the special Killing forms
Externí odkaz:
http://arxiv.org/abs/1403.1015