Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Vishwakarma, Prateek Kumar"'
We resolve an algebraic version of Schoenberg's celebrated theorem [Duke Math.J., 1942] characterizing entrywise matrix transforms that preserve positive definiteness. Compared to the classical real and complex settings, we consider matrices with ent
Externí odkaz:
http://arxiv.org/abs/2404.00222
We show that the partial sums of the long Pl\"ucker relations for pairs of weakly separated Pl\"ucker coordinates oscillate around $0$ on the totally nonnegative part of the Grassmannian. Our result generalizes the classical oscillating inequalities
Externí odkaz:
http://arxiv.org/abs/2310.12916
Publikováno v:
Linear Algebra Appl. 694, 2024, pages 360-413
A real linear combination of products of minors which is nonnegative over all totally nonnegative (TN) matrices is called a determinantal inequality for these matrices. It is referred to as multiplicative when it compares two collections of products
Externí odkaz:
http://arxiv.org/abs/2305.16485
Publikováno v:
In Linear Algebra and Its Applications 1 August 2024 694:360-413
Autor:
Vishwakarma, Prateek Kumar
Publikováno v:
Trans. Amer. Math. Soc. 376 (2023), 5261-5279
The question of which functions acting entrywise preserve positive semidefiniteness has a long history, beginning with the Schur product theorem [Crelle 1911], which implies that absolutely monotonic functions (i.e., power series with nonnegative coe
Externí odkaz:
http://arxiv.org/abs/2002.00332
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.