Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Vishnyakova, Elizaveta"'
Autor:
Vishnyakova, Elizaveta
We define and study a multiplicity free covering of a graded manifold. As an application of our research we give a new conceptual proof of the theorem about equivalence of categories of graded manifolds and symmetric $n$-fold vector bundles.
Com
Com
Externí odkaz:
http://arxiv.org/abs/2409.02211
Autor:
Vishnyakova, Elizaveta
We introduce and investigate the notion of a $\mathbb Z$-graded covering for a supermanifold. More precisely, Donagi and Witten suggested a construction of the first obstruction class for splitting of a supermanifold via differential operators. We pr
Externí odkaz:
http://arxiv.org/abs/2212.09558
Any complex-analytic vector bundle $\mathbb E$ admits naturally defined homotheties $\phi_{\alpha}$, $\alpha\in \mathbb C^*$, i.e. $\phi_{\alpha}$ is the multiplication of a local section by a complex number $\alpha$. We investigate the question when
Externí odkaz:
http://arxiv.org/abs/2205.04380
Publikováno v:
In Journal of Algebra 15 April 2024 644:232-286
We generalize the Donagi and Witten construction of a first obstruction class for splitting of a supermanifold via differential operators using the theory of $n$-fold vector bundles and graded manifolds. Applying the generalized Donagi--Witten constr
Externí odkaz:
http://arxiv.org/abs/2103.00665
Autor:
Vishnyakova, Elizaveta
We prove that under certain assumptions a supermanifold of flags is rigid, this is its complex structure does not admit any non-trivial small deformation. Moreover under the same assumptions we show that a supermanifold of flags is unique non-split s
Externí odkaz:
http://arxiv.org/abs/1908.11753
We construct a new class of algebras resembling enveloping algebras and generalizing orthogonal Gelfand-Zeitlin algebras and rational Galois algebras studied by [EMV,FuZ,RZ,Har]. The algebras are defined via a geometric realization in terms of sheave
Externí odkaz:
http://arxiv.org/abs/1811.00332
Autor:
Vishnyakova, Elizaveta
We compute the Lie superalgebras of holomorphic vector fields on isotropic flag supermanifolds of maximal type corresponding to the Lie superalgebra $\mathfrak{osp}_{2m-1|2n}(\mathbb C)$.
Comment: 15 pages
Comment: 15 pages
Externí odkaz:
http://arxiv.org/abs/1801.09239
We prove that every orthogonal Gelfand-Zeitlin algebra $U$ acts on its Gelfand-Zeitlin subalgebra $\Gamma$. Considering the dual module, we show that every Gelfand-Zeitlin character of $\Gamma$ is realizable in a $U$-module. We observe that the Gelfa
Externí odkaz:
http://arxiv.org/abs/1709.01553
Autor:
Vishnyakova, Elizaveta
We give an elementary construction of a $p\geq 1$-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb C)$-module in terms of local distributions. This is a generalization of the universal $1$-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb C)$-module
Externí odkaz:
http://arxiv.org/abs/1705.05793