Zobrazeno 1 - 10
of 120
pro vyhledávání: '"Vishnyakova, E"'
Autor:
Vishnyakova, E. G.
The paper is devoted to a computation of the Lie superalgebras of holomorphic vector fields on isotropic flag supermanifolds of maximal type corresponding to the Lie superalgebras $\mathfrak{osp}_{2m|2n}(\mathbb C)$ and $\pi\mathfrak{sp}_{n}(\mathbb
Externí odkaz:
http://arxiv.org/abs/1706.00128
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vishnyakova, E. G.
The main result of this paper is the computation of the Lie superalgebras of holomorphic vector fields on the complex $\Pi$-symmetric flag supermanifolds, introduced by Yu.I.~Manin. We prove that with one exception any vector field is fundamental wit
Externí odkaz:
http://arxiv.org/abs/1506.02295
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vishnyakova, E. G.
We obtain a classification up to isomorphism of complex-analytic supermanifolds with underlying space $\mathbb{CP}^1$ of dimension $1|3$ with retract $(k,k,k)$, where $k\in \mathbb{Z}$. More precisely, we prove that classes of isomorphic complex-anal
Externí odkaz:
http://arxiv.org/abs/1311.7291
Autor:
Vishnyakova, E. G.
Publikováno v:
Differential Geometry and its Applications 31 (2013) 698-706
The classification of even-homogeneous complex supermanifolds of dimension 1|m, m\leq 3, on CP^1 up to isomorphism is given. An explicit description of such supermanifolds in terms of local charts and coordinates is obtained.
Comment: 13 pages
Comment: 13 pages
Externí odkaz:
http://arxiv.org/abs/1212.6614
Autor:
Vishnyakova, E. G.
It is a classical result that any complex analytic Lie supergroup $\mathcal{G}$ is split \cite{kosz}, that is its structure sheaf is isomorphic to the structure sheaf of a certain vector bundle. However, there do exist non-split complex analytic homo
Externí odkaz:
http://arxiv.org/abs/1206.7017
Autor:
Onishchik, A. L., Vishnyakova, E. G.
Publikováno v:
Transformation groups, 2013, Volume 18, Issue 2, pp 483-505
An important part of the classical theory of real or complex manifolds is the theory of (smooth, real analytic or complex analytic) vector bundles. With any vector bundle over a manifold (M,F) the sheaf of its (smooth, real analytic or complex analyt
Externí odkaz:
http://arxiv.org/abs/1110.3908
Autor:
Vishnyakova, E. G.
Publikováno v:
Proceedings of the XXX Workshop on Geometric Methods in Physics, 2012, P. 125-132
This paper is based on the paper "Locally free sheaves on complex supermanifolds" of A.L.Onishchik, E.G. Vishnyakova, where two classification theorems for locally free sheaves on supermanifolds were proved and a spectral sequence for a locally free
Externí odkaz:
http://arxiv.org/abs/1110.3912
Autor:
Vishnyakova, E. G.
Publikováno v:
Journal of Algebra 350 (2012) pp. 174-196
It is well-known that non-constant holomorphic functions do not exist on a compact complex manifold. This statement is false for a supermanifold with a compact reduction. In this paper we study the question under what conditions non-constant holomorp
Externí odkaz:
http://arxiv.org/abs/1007.1576