Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Vipperla, Ravichander"'
Autor:
Swiatkowski, Jakub, Wang, Duo, Babianski, Mikolaj, Coccia, Giuseppe, Tobing, Patrick Lumban, Vipperla, Ravichander, Klimkov, Viacheslav, Pollet, Vincent
Speech generation for machine dubbing adds complexity to conventional Text-To-Speech solutions as the generated output is required to match the expressiveness, emotion and speaking rate of the source content. Capturing and transferring details and va
Externí odkaz:
http://arxiv.org/abs/2306.11662
Autor:
Swiatkowski, Jakub, Wang, Duo, Babianski, Mikolaj, Tobing, Patrick Lumban, Vipperla, Ravichander, Pollet, Vincent
Prosody transfer is well-studied in the context of expressive speech synthesis. Cross-lingual prosody transfer, however, is challenging and has been under-explored to date. In this paper, we present a novel solution to learn prosody representations t
Externí odkaz:
http://arxiv.org/abs/2306.11658
Autor:
Li, Lantian, Liu, Ruiqi, Kang, Jiawen, Fan, Yue, Cui, Hao, Cai, Yunqi, Vipperla, Ravichander, Zheng, Thomas Fang, Wang, Dong
Research on speaker recognition is extending to address the vulnerability in the wild conditions, among which genre mismatch is perhaps the most challenging, for instance, enrollment with reading speech while testing with conversational or singing au
Externí odkaz:
http://arxiv.org/abs/2012.12468
Autor:
Vipperla, Ravichander, Park, Sangjun, Choo, Kihyun, Ishtiaq, Samin, Min, Kyoungbo, Bhattacharya, Sourav, Mehrotra, Abhinav, Ramos, Alberto Gil C. P., Lane, Nicholas D.
LPCNet is an efficient vocoder that combines linear prediction and deep neural network modules to keep the computational complexity low. In this work, we present two techniques to further reduce it's complexity, aiming for a low-cost LPCNet vocoder-b
Externí odkaz:
http://arxiv.org/abs/2008.04574
Autor:
Mehrotra, Abhinav, Dudziak, Łukasz, Yeo, Jinsu, Lee, Young-yoon, Vipperla, Ravichander, Abdelfattah, Mohamed S., Bhattacharya, Sourav, Ishtiaq, Samin, Ramos, Alberto Gil C. P., Lee, SangJeong, Kim, Daehyun, Lane, Nicholas D.
Publikováno v:
INTERSPEECH 2020
Increasing demand for on-device Automatic Speech Recognition (ASR) systems has resulted in renewed interests in developing automatic model compression techniques. Past research have shown that AutoML-based Low Rank Factorization (LRF) technique, when
Externí odkaz:
http://arxiv.org/abs/2008.02897
Autor:
Dudziak, Łukasz, Abdelfattah, Mohamed S., Vipperla, Ravichander, Laskaridis, Stefanos, Lane, Nicholas D.
End-to-end automatic speech recognition (ASR) models are increasingly large and complex to achieve the best possible accuracy. In this paper, we build an AutoML system that uses reinforcement learning (RL) to optimize the per-layer compression ratios
Externí odkaz:
http://arxiv.org/abs/1907.03540
Autor:
Li, Lantian, Liu, Ruiqi, Kang, Jiawen, Fan, Yue, Cui, Hao, Cai, Yunqi, Vipperla, Ravichander, Zheng, Thomas Fang, Wang, Dong
Publikováno v:
In Speech Communication February 2022 137:77-91
Publikováno v:
INTERSPEECH 2013, 14th Annual Conference of the International Speech Communication Association, August 25-29, 2013, Lyon, France
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1093::6d67a6470d7c9ccd0af187a1671a7b4c
http://www.eurecom.fr/publication/4019
http://www.eurecom.fr/publication/4019
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Transactions on Signal Processing, Volume 61, N°1, 2013, ISSN: 1053-587X
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1093::c28c950e50f24b552ac9101838e182ee
http://www.eurecom.fr/publication/3820
http://www.eurecom.fr/publication/3820