Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Vinod, Vivin"'
Autor:
Lyu, Dongyu, Holzenkamp, Matthias, Vinod, Vivin, Holtkamp, Yannick Marcel, Maity, Sayan, Salazar, Carlos R., Kleinekathöfer, Ulrich, Zaspel, Peter
Natural light-harvesting antenna complexes efficiently capture solar energy using chlorophyll, i.e., magnesium porphyrin pigments, embedded in a protein matrix. Inspired by this natural configuration, artificial clay-porphyrin antenna structures have
Externí odkaz:
http://arxiv.org/abs/2410.20551
Autor:
Vinod, Vivin, Zaspel, Peter
The development of machine learning (ML) methods has made quantum chemistry (QC) calculations more accessible by reducing the compute cost incurred in conventional QC methods. This has since been translated into the overhead cost of generating traini
Externí odkaz:
http://arxiv.org/abs/2410.11391
Autor:
Vinod, Vivin, Zaspel, Peter
Recent progress in machine learning (ML) has made high-accuracy quantum chemistry (QC) calculations more accessible. Of particular interest are multifidelity machine learning (MFML) methods where training data from differing accuracies or fidelities
Externí odkaz:
http://arxiv.org/abs/2410.11392
Autor:
Vinod, Vivin, Zaspel, Peter
Multifidelity machine learning (MFML) for quantum chemical (QC) properties has seen strong development in the recent years. The method has been shown to reduce the cost of generating training data for high-accuracy low-cost ML models. In such a set-u
Externí odkaz:
http://arxiv.org/abs/2407.17087
Autor:
Vinod, Vivin, Zaspel, Peter
Progress in both Machine Learning (ML) and Quantum Chemistry (QC) methods have resulted in high accuracy ML models for QC properties. Datasets such as MD17 and WS22 have been used to benchmark these models at some level of QC method, or fidelity, whi
Externí odkaz:
http://arxiv.org/abs/2406.14149
Machine learning (ML) provides access to fast and accurate quantum chemistry (QC) calculations for various properties of interest such as excitation energies. It is often the case that high accuracy in prediction using an ML model, demands a large an
Externí odkaz:
http://arxiv.org/abs/2312.05661
The accurate but fast calculation of molecular excited states is still a very challenging topic. For many applications, detailed knowledge of the energy funnel in larger molecular aggregates is of key importance requiring highly accurate excited stat
Externí odkaz:
http://arxiv.org/abs/2305.11292
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Chemical Theory & Computation; 11/14/2023, Vol. 19 Issue 21, p7658-7670, 13p