Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Vinh Thong Ta"'
Publikováno v:
IEEE Access, Vol 10, Pp 89270-89288 (2022)
In a world where organisations are embracing new IT working models such as Bring Your Own Device (BYOD) and remote working, the traditional mindset of defending the network perimeter is no longer sufficient. Zero Trust Architecture (ZTA) has recently
Externí odkaz:
https://doaj.org/article/5726113b316d4d78be3951a192aca390
Publikováno v:
Sensors, Vol 23, Iss 18, p 8006 (2023)
Vehicular Social Networks (VSNs) have emerged as a new social interaction paradigm, where vehicles can form social networks on the roads to improve the convenience/safety of passengers. VSNs are part of Vehicle to Everything (V2X) services, which is
Externí odkaz:
https://doaj.org/article/21e1e1d0b8c847a4aa43d5f1859e704e
Autor:
Pierrick Coupé, Boris Mansencal, Michaël Clément, Rémi Giraud, Baudouin Denis de Senneville, Vinh-Thong Ta, Vincent Lepetit, José V. Manjon
Publikováno v:
NeuroImage, Vol 219, Iss , Pp 117026- (2020)
AbstractWhole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous
Externí odkaz:
https://doaj.org/article/62c9a22b6cc84d51963068d7571d4b5f
Autor:
José V. Manjón, Nicolas Papadakis, Pierrick Coupé, Reda Abdellah Kamraoui, Fanny Compaire, Vinh-Thong Ta
Publikováno v:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 ISBN: 9783030871956
MICCAI (2)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, Sep 2021, Strasbourg (virtual), France. pp.373-382, ⟨10.1007/978-3-030-87196-3_35⟩
MICCAI (2)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, Sep 2021, Strasbourg (virtual), France. pp.373-382, ⟨10.1007/978-3-030-87196-3_35⟩
International audience; Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of annotated images and the lack of method generalization to unseen domains, two usual problems in medical segmentation tasks. In this work, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22d27b6fd16ccb47351f2c9b8dd5da3a
https://doi.org/10.1007/978-3-030-87196-3_35
https://doi.org/10.1007/978-3-030-87196-3_35
Autor:
Vinh-Thong Ta, José V. Manjón, Kilian Hett, Alzheimer’s Disease Neuroimaging Initiative, Ipek Oguz, Pierrick Coupé
Publikováno v:
Med Image Anal
[EN] The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer¿s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ad3e151099f1e79f10f58a6ebcb7b2e
https://doi.org/10.1016/j.media.2020.101850
https://doi.org/10.1016/j.media.2020.101850
Autor:
Reda Abdellah Kamraoui, Thomas Tourdias, José V. Manjón, Vinh-Thong Ta, Pierrick Coupé, Boris Mansencal
Publikováno v:
Medical Image Analysis
Medical Image Analysis, 2022, 76, pp.102312. ⟨10.1016/j.media.2021.102312⟩
Medical Image Analysis, 2022, 76, pp.102312. ⟨10.1016/j.media.2021.102312⟩
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation condit
Publikováno v:
Medical Image Analysis
Medical Image Analysis, Elsevier, In press
HAL
Medical Image Analysis, Elsevier, In press
HAL
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::af0769bda01c06a41e943ec6db575110
https://hal.archives-ouvertes.fr/hal-02967401/document
https://hal.archives-ouvertes.fr/hal-02967401/document
Autor:
José V. Manjón, Vinh-Thong Ta, Boris Mansencal, Baudouin Denis de Senneville, Vincent Lepetit, Michaël Clément, Rémi Giraud, Pierrick Coupé
Publikováno v:
NeuroImage, Vol 219, Iss, Pp 117026-(2020)
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
NeuroImage
NeuroImage, 2020, 219, pp.117026. ⟨10.1016/j.neuroimage.2020.117026⟩
NeuroImage, Elsevier, 2020, 219, pp.117026. ⟨10.1016/j.neuroimage.2020.117026⟩
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
NeuroImage
NeuroImage, 2020, 219, pp.117026. ⟨10.1016/j.neuroimage.2020.117026⟩
NeuroImage, Elsevier, 2020, 219, pp.117026. ⟨10.1016/j.neuroimage.2020.117026⟩
[EN] Whole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL
Autor:
Vinh-Thong Ta, Dominic J. Hodgkiss
Publikováno v:
Edge Hill University
Traffic control systems are imperative to the everyday function and quality of life for society. The current methods, such as; SCATS, SCOOT and InSync, provide this solution, but with limited flexibility. With the advances in context-aware technologi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de67e71d284b150739ce75273ce88ddf
https://clok.uclan.ac.uk/35203/1/Chapter.pdf
https://clok.uclan.ac.uk/35203/1/Chapter.pdf
Publikováno v:
Computer Vision and Image Understanding
Computer Vision and Image Understanding, Elsevier, 2018
Computer Vision and Image Understanding, Elsevier, 2018
Superpixel decomposition methods are widely used in computer vision and image processing applications. By grouping homogeneous pixels, the accuracy can be increased and the decrease of the number of elements to process can drastically reduce the comp