Zobrazeno 1 - 10
of 197
pro vyhledávání: '"Vincenzo, E"'
Publikováno v:
In Gait & Posture June 2024 111:53-58
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
JHEP11(2019)060
The Principal Chiral Model (PCM) defined on the group manifold of SU(2) is here investigated with the aim of getting a further deepening of its relation with Generalized and Doubled Geometry. A one-parameter family of equivalent Hamiltonian descripti
Externí odkaz:
http://arxiv.org/abs/1903.01243
Autor:
D’Onofrio, Antonio, Marini, Massimiliano, Rovaris, Giovanni, Zanotto, Gabriele, Calvi, Valeria, Iacopino, Saverio, Biffi, Mauro, Solimene, Francesco, Della Bella, Paolo, Caravati, Fabrizio, Pisanò, Ennio C., Amellone, Claudia, D’Alterio, Giuliano, Pedretti, Stefano, Santobuono, Vincenzo E., Russo, Antonio Dello, Nicolis, Daniele, De Salvia, Alberto, Baroni, Matteo, Quartieri, Fabio, Manzo, Michele, Rapacciuolo, Antonio, Saporito, Davide, Maines, Massimiliano, Marras, Elena, Bontempi, Luca, Morani, Giovanni, Giacopelli, Daniele, Gargaro, Alessio, Giammaria, Massimo
Publikováno v:
In Heart Rhythm February 2023 20(2):233-240
We survey physical models which capture the main concepts of double field theory on para-Hermitian manifolds. We show that the geometric theory of Lagrangian and Hamiltonian dynamical systems is an instance of para-Kahler geometry which extends to a
Externí odkaz:
http://arxiv.org/abs/1810.03953
Publikováno v:
Heliyon, Vol 9, Iss 4, Pp e14856- (2023)
Balance-correcting responses are fast, accurate, and functionally- and directionally-specific. However, there remains a lack of clarity in the literature as to how balance-correcting responses are organized, perhaps due to use of various perturbation
Externí odkaz:
https://doaj.org/article/0dcd0f81ff284a7597165fca1b26b017
Publikováno v:
Journal of High Energy Physics, Vol 2019, Iss 11, Pp 1-43 (2019)
Abstract The Principal Chiral Model (PCM) defined on the group manifold of SU(2) is here investigated with the aim of getting a further deepening of its relation with Generalized Geometry and Doubled Geometry. A one-parameter family of equivalent Ham
Externí odkaz:
https://doaj.org/article/8f629fbadf6a493d95aaa3f08d6ef63c