Zobrazeno 1 - 10
of 155
pro vyhledávání: '"Vina, Andres"'
Autor:
Viña, Andrés
Considering the $B$-branes over a complex manifold $Y$ as objects of the bounded derived category $D^b(Y)$, we define holomorphic gauge fields on $B$-branes and the Yang-Mills functional for these fields.These definitions are a generalization to $B$-
Externí odkaz:
http://arxiv.org/abs/2407.06193
Autor:
Viña, Andrés
Considering the $B$-branes over the complex projective space ${\mathbb P}^n$ as the objects of the bounded derived category $D^b({\mathbb P}^n)$, we prove that the cardinal of the set of holomorphic gauge fields on a given $B$-brane ${\mathscr G}^{\b
Externí odkaz:
http://arxiv.org/abs/2210.07635
Autor:
Viña, Andrés
Considering the $B$-branes over a complex manifold $Y$ as objects of the bounded derived category $D^b(Y)$, we define holomorphic gauge fields on $B$-branes and the Yang-Mills functional for these fields.These definitions are a generalization to $B$-
Externí odkaz:
http://arxiv.org/abs/2206.10238
Autor:
Viña, Andrés
Given a flat gauge field $\nabla$ on a vector bundle $F$ over a manifold $M$ we deduce a necessary and sufficient condition for the field $\nabla+ E$, with $E$ an ${\rm End}(F)$-valued $1$-form, to be a Yang-Mills field. For each curve of Yang-Mills
Externí odkaz:
http://arxiv.org/abs/2109.11841
Autor:
Viña, Andrés
The geometric phase that appears in the effects of Aharonov-Bohm type is interpreted in the frame of Deligne's version of the Riemann-Hilbert correspondence. We extend also the concept of flat gauge field to $B$-branes which are coherent sheaves, so
Externí odkaz:
http://arxiv.org/abs/1912.01239
Autor:
Viña, Andrés
Considering the $D$-branes on a variety $Z$ as the objects of the derived category $D^b(Z)$, we propose a definition for the charge of $D$-branes on not necessarily smooth varieties. We define the charge $Q({\mathcal G})$ of ${\mathcal G}\in D^b(Z)$
Externí odkaz:
http://arxiv.org/abs/1811.07588
Autor:
Viña, Andrés
Given a generic anticanonical hypersurface $Y$ of a toric variety determined by a reflexive polytope, we define a line bundle ${\mathcal L}$ on $Y$ that generates a spanning class in the bounded derivative category $D^b(Y)$. From this fact, we deduce
Externí odkaz:
http://arxiv.org/abs/1804.04124
Autor:
Gitelson, Anatoly a, ⁎, Viña, Andrés b, c, Inoue, Yoshio d, Arkebauer, Timothy e, Schlemmer, Michael f, Schepers, James e
Publikováno v:
In Agricultural and Forest Meteorology 1 June 2022 320
Autor:
Tromboni, Flavia, Liu, Jianguo, Ziaco, Emanuele, Breshears, David D, Thompson, Kimberly L, Dodds, Walter K, Dahlin, Kyla M, LaRue, Elizabeth A, Thorp, James H, Viña, Andrés, Laguë, Marysa M, Maasri, Alain, Yang, Hongbo, Chandra, Sudeep, Fei, Songlin
Publikováno v:
Frontiers in Ecology and the Environment, 2021 Feb 01. 19(1), 20-29.
Externí odkaz:
https://www.jstor.org/stable/26986372
Autor:
Viña, Andrés
Let $X$ be Calabi-Yau manifold acted by a group $G$. We give a definition of $G$-equivariance for branes on $X$, and assign to each equivariant brane an element of the equivariant cohomology of $X$ that can be considered as a charge of the brane. We
Externí odkaz:
http://arxiv.org/abs/1701.07977