Zobrazeno 1 - 10
of 350
pro vyhledávání: '"Villarreal, Juan"'
Autor:
Bakalov, Bojko, Villarreal, Juan J.
We study a family of algebras defined using a locally-finite endomorphism called a braiding map. When the braiding map is semi-simple, the algebra is a generalized vertex algebra, while when the braiding map is locally-nilpotent we have a logarithmic
Externí odkaz:
http://arxiv.org/abs/2406.08458
Autor:
Villarreal, Juan J.
We describe the intertwiners between modules of a vertex algebra using the language of lambda bracket. We apply this formalism to obtain some classical results on conformal field theory.
Externí odkaz:
http://arxiv.org/abs/2310.18872
The Feigin--Frenkel theorem states that, over the complex numbers, the centre of the universal affine vertex algebra at the critical level is an infinite rank polynomial algebra. The first author and W.~Wang observed that in positive characteristics,
Externí odkaz:
http://arxiv.org/abs/2305.17765
Autor:
Bakalov, Bojko, Villarreal, Juan
Logarithmic vertex algebras were introduced in our previous paper, motivated by logarithmic conformal field theory. Non-local Poisson vertex algebras were introduced by De Sole and Kac, motivated by the theory of integrable systems. We prove that the
Externí odkaz:
http://arxiv.org/abs/2210.15568
Publikováno v:
In Forest Ecology and Management 1 July 2024 563
Autor:
Bakalov, Bojko, Villarreal, Juan J.
We introduce and study the notion of a logarithmic vertex algebra, which is a vertex algebra with logarithmic singularities in the operator product expansion of quantum fields; thus providing a rigorous formulation of the algebraic properties of quan
Externí odkaz:
http://arxiv.org/abs/2107.10206
Autor:
Cantu-Rodriguez, Olga Graciela, Osorno-Rodriguez, Karen Lorena, Dorsey-Trevino, Edgar Gerardo, Gutierrez-Aguirre, Cesar Homero, Jaime-Perez, Jose Carlos, Gomez-Villarreal, Juan Pablo, Rios-Rodelo, Miguel Ricardo, Gonzalez-Cantu, Graciela Alejandra, Contreras-Arce, Alan, Colunga-Pedraza, Perla Rocio, Gomez-De Leon, Andres, Mancias-Guerra, Maria del Consuelo, Tarin-Arzaga, Luz del Carmen, Gomez-Almaguer, David
Publikováno v:
In Clinical Lymphoma, Myeloma and Leukemia November 2023 23(11):e386-e392
Autor:
Villarreal, Juan Jose
This work is divide in two cases. In the first case, we consider a spin manifold $M$ as the set of fixed points of an $S^{1}$-action on a spin manifold $X$, and in the second case we consider the spin manifold $M$ as the set of fixed points of an $S^
Externí odkaz:
http://arxiv.org/abs/1910.04213