Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Villamil, Christian"'
Let $\varphi$ be a smooth conservative diffeomorphism of a compact surface $S$ and let $\Lambda$ be a mixing horseshoe of $\varphi$. Given a smooth real function $f$ defined on $S$, we define for points $\eta$ in the unstable Cantor set of the pair $
Externí odkaz:
http://arxiv.org/abs/2411.16939
Let $\varphi_0$ be a $C^2$-conservative diffeomorphism of a compact surface $S$ and let $\Lambda_0$ be a mixing horseshoe of $\varphi_0$. Given a smooth real function $f$ defined in $S$ and some diffeomorphism $\varphi$, close to $\varphi_0$, let $\m
Externí odkaz:
http://arxiv.org/abs/2403.18940
We prove that for any $\eta$ that belongs to the closure of the interior of the Markov and Lagrange spectra, the sets $k^{-1}((-\infty,\eta])$ and $k^{-1}(\eta)$, which are the sets of irrational numbers with best constant of Diophantine approximatio
Externí odkaz:
http://arxiv.org/abs/2309.14646
Let $\varphi_0$ be a smooth conservative diffeomorphism of a compact surface $S$ and let $\Lambda_0$ be a mixing horseshoe of $\varphi_0$. Given a smooth real function $f$ defined in $S$ and a small smooth conservative perturbation $\varphi$ of $\var
Externí odkaz:
http://arxiv.org/abs/2305.07819