Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Villacampa, Raquel"'
We classify the nilpotent Lie algebras of real dimension eight and minimal center that admit a complex structure. Furthermore, for every such nilpotent Lie algebra $\mathfrak{g}$, we describe the space of complex structures on $\mathfrak{g}$ up to is
Externí odkaz:
http://arxiv.org/abs/2011.09916
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove that for any $n\geq 4$ there are infinitely many real homotopy types of $2n$-dimensional nilmanifolds admitting generalized complex structures of every type $k$, for $0 \leq k \leq n$. This is in deep contrast to the $6$-dimensional case.
Externí odkaz:
http://arxiv.org/abs/1905.11111
We consider the Laplacian coflow of a $\mathrm{G}_2$-structure on warped products of the form $M^7= M^6 \times_f S^1$ with $M^6$ a compact 6-manifold endowed with an $\mathrm{SU}(3)$-structure. We give an explicit reinterpretation of this flow as a s
Externí odkaz:
http://arxiv.org/abs/1904.06080
Publikováno v:
In Journal of Algebra 15 January 2023 614:271-306
Publikováno v:
Commun. Anal. Geom. 30 (2022), no. 5, 961--1006
We study Hermitian metrics with a Gauduchon connection being "K\"ahler-like", namely, satisfying the same symmetries for curvature as the Levi-Civita and Chern connections. In particular, we investigate $6$-dimensional solvmanifolds with invariant co
Externí odkaz:
http://arxiv.org/abs/1809.02632
We find a one-parameter family of non-isomorphic nilpotent Lie algebras $\mathfrak{g}_a$, with $a \in [0,\infty)$, of real dimension eight with (strongly non-nilpotent) complex structures. By restricting $a$ to take rational values, we arrive at the
Externí odkaz:
http://arxiv.org/abs/1712.07820
We study the Laplacian flow of a $\mathrm{G}_2$-structure where this latter structure is claimed to be Locally Conformal Parallel. The first examples of long time solutions of this flow with the Locally Conformal Parallel condition are given. All of
Externí odkaz:
http://arxiv.org/abs/1711.08644
Publikováno v:
Rev. Mat. Iberoam. 33 (2017), no. 4, 1309--1350
We study the six-dimensional solvmanifolds that admit complex structures of splitting type classifying the underlying solvable Lie algebras. In particular, many complex structures of this type exist on the Nakamura manifold $X$, and they allow us to
Externí odkaz:
http://arxiv.org/abs/1507.03385
Publikováno v:
In Differential Geometry and its Applications April 2020 69