Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Vilenkin, Arkady"'
Autor:
Meerson, Baruch, Vilenkin, Arkady
Publikováno v:
Phys. Rev. E 108, 014117 (2023)
We study large deviations of the one-point height distribution, $\mathcal{P}(H,T)$, of a stochastic interface, governed by the Golubovi\'{c}-Bruinsma equation $$ \partial_{t}h=-\nu\partial_{x}^{4}h+\frac{\lambda}{2}\left(\partial_{x}h\right)^{2}+\sqr
Externí odkaz:
http://arxiv.org/abs/2303.06606
The ``Brownian bees'' model describes an ensemble of $N=$~const independent branching Brownian particles. The conservation of $N$ is provided by a modified branching process. When a particle branches into two particles, the particle which is farthest
Externí odkaz:
http://arxiv.org/abs/2209.07217
Publikováno v:
J. Stat. Mech. (2019) 053207
We study the complete probability distribution $\mathcal{P}\left(\bar{H},t\right)$ of the time-averaged height $\bar{H}=(1/t)\int_0^t h(x=0,t')\,dt'$ at point $x=0$ of an evolving 1+1 dimensional Kardar-Parisi-Zhang (KPZ) interface $h\left(x,t\right)
Externí odkaz:
http://arxiv.org/abs/1902.08110
Autor:
Meerson, Baruch, Vilenkin, Arkady
Publikováno v:
Phys. Rev. E 98, 032145 (2018)
Consider a stochastic interface $h(x,t)$, described by the $1+1$ Kardar-Parisi-Zhang (KPZ) equation on the half-line $x\geq 0$. The interface is initially flat, $h(x,t=0)=0$, and driven by a Neumann boundary condition $\partial_x h(x=0,t)=A$ and by t
Externí odkaz:
http://arxiv.org/abs/1807.11048
Publikováno v:
J. Stat. Mech. (2018) 053201
We consider an infinite interface in $d>2$ dimensions, governed by the Kardar-Parisi-Zhang (KPZ) equation with a weak Gaussian noise which is delta-correlated in time and has short-range spatial correlations. We study the probability distribution of
Externí odkaz:
http://arxiv.org/abs/1712.10186
Publikováno v:
Phys. Rev. Lett. 116, 070601 (2016)
Using the weak-noise theory, we evaluate the probability distribution $\mathcal{P}(H,t)$ of large deviations of height $H$ of the evolving surface height $h(x,t)$ in the Kardar-Parisi-Zhang (KPZ) equation in one dimension when starting from a flat in
Externí odkaz:
http://arxiv.org/abs/1512.04910
Publikováno v:
Phys. Rev. E 93, 012136 (2016)
Suppose that a $d$-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density $n_0$. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the
Externí odkaz:
http://arxiv.org/abs/1507.04460
Autor:
Meerson, Baruch, Vilenkin, Arkady
Publikováno v:
Phys. Rev. E 93, 020102 (2016)
We investigate non-equilibrium fluctuations of a solid surface governed by the stochastic Mullins-Herring equation with conserved noise. This equation describes surface diffusion of adatoms accompanied by their exchange between the surface and the bu
Externí odkaz:
http://arxiv.org/abs/1507.00822
Publikováno v:
Phys. Rev. E 90, 022120 (2014)
Let a lattice gas of constant density, described by the symmetric simple exclusion process, be brought in contact with a "target": a spherical absorber of radius $R$. Employing the macroscopic fluctuation theory (MFT), we evaluate the probability ${\
Externí odkaz:
http://arxiv.org/abs/1406.3502
Publikováno v:
J. Stat. Mech. P06007 (2014)
We use the macroscopic fluctuation theory (MFT) to evaluate the probability distribution P of extreme values of integrated current J at a specified time t=T in the symmetric simple exclusion process (SSEP) on an infinite line. As shown recently [Phys
Externí odkaz:
http://arxiv.org/abs/1403.7601