Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Vilas, Martina"'
Many proposed applications of neural networks in machine learning, cognitive/brain science, and society hinge on the feasibility of inner interpretability via circuit discovery. This calls for empirical and theoretical explorations of viable algorith
Externí odkaz:
http://arxiv.org/abs/2410.08025
Autor:
Guo, Manshan, Choksi, Bhavin, Sadiya, Sari, Gifford, Alessandro T., Vilas, Martina G., Cichy, Radoslaw M., Roig, Gemma
In contrast to human vision, artificial neural networks (ANNs) remain relatively susceptible to adversarial attacks. To address this vulnerability, efforts have been made to transfer inductive bias from human brains to ANNs, often by training the ANN
Externí odkaz:
http://arxiv.org/abs/2409.03646
Autor:
Panda, Mahadev Prasad, Tiezzi, Matteo, Vilas, Martina, Roig, Gemma, Eskofier, Bjoern M., Zanca, Dario
We introduce Foveation-based Explanations (FovEx), a novel human-inspired visual explainability (XAI) method for Deep Neural Networks. Our method achieves state-of-the-art performance on both transformer (on 4 out of 5 metrics) and convolutional mode
Externí odkaz:
http://arxiv.org/abs/2408.02123
Position: An Inner Interpretability Framework for AI Inspired by Lessons from Cognitive Neuroscience
Inner Interpretability is a promising emerging field tasked with uncovering the inner mechanisms of AI systems, though how to develop these mechanistic theories is still much debated. Moreover, recent critiques raise issues that question its usefulne
Externí odkaz:
http://arxiv.org/abs/2406.01352
Despite the growing use of transformer models in computer vision, a mechanistic understanding of these networks is still needed. This work introduces a method to reverse-engineer Vision Transformers trained to solve image classification tasks. Inspir
Externí odkaz:
http://arxiv.org/abs/2310.18969
We introduce Net2Brain, a graphical and command-line user interface toolbox for comparing the representational spaces of artificial deep neural networks (DNNs) and human brain recordings. While different toolboxes facilitate only single functionaliti
Externí odkaz:
http://arxiv.org/abs/2208.09677
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Niso, Guiomar, Krol, Laurens R., Combrisson, Etienne, Dubarry, A. Sophie, Elliott, Madison A., François, Clément, Héjja-Brichard, Yseult, Herbst, Sophie K., Jerbi, Karim, Kovic, Vanja, Lehongre, Katia, Luck, Steven J., Mercier, Manuel, Mosher, John C., Pavlov, Yuri G., Puce, Aina, Schettino, Antonio, Schön, Daniele, Sinnott-Armstrong, Walter, Somon, Bertille, Šoškić, Anđela, Styles, Suzy J., Tibon, Roni, Vilas, Martina G., van Vliet, Marijn, Chaumon, Maximilien
Publikováno v:
In NeuroImage 15 August 2022 257
Autor:
Dottori, Martin, Hesse, Eugenia, Santilli, Micaela, Vilas, Martina G., Martorell Caro, Miguel, Fraiman, Daniel, Sedeño, Lucas, Ibáñez, Agustín, García, Adolfo M.
Publikováno v:
In NeuroImage 1 April 2020 209
Autor:
Pallavicini, Carla, Vilas, Martina G., Villarreal, Mirta, Zamberlan, Federico, Muthukumaraswamy, Suresh, Nutt, David, Carhart-Harris, Robin, Tagliazucchi, Enzo
Publikováno v:
In NeuroImage 15 October 2019 200:281-291