Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Viktor, BÉRCZI"'
Autor:
Kolos Turtóczki, Hyunsoo Cho, Sorour Dastaran, Pál N. Kaposi, Zoltán Tömösváry, Szabolcs Várbíró, Nándor Ács, Ildikó Kalina, Viktor Bérczi
Publikováno v:
CVIR Endovascular, Vol 7, Iss 1, Pp 1-8 (2024)
Abstract Background Uterine artery embolisation is a recommended method of adenomyosis treatment with good clinical results. Changes in uterine volume and maximal junctional zone thickness (JZmax) after embolisation are thoroughly analyzed in the lit
Externí odkaz:
https://doaj.org/article/6af319e260154585a209c3c34c0ed151
Autor:
Zita Zsombor, Boglárka Zsély, Aladár D. Rónaszéki, Róbert Stollmayer, Bettina K. Budai, Lőrinc Palotás, Viktor Bérczi, Ildikó Kalina, Pál Maurovich Horvat, Pál Novák Kaposi
Publikováno v:
Diagnostics, Vol 14, Iss 11, p 1138 (2024)
(1) Background: Open-source software tools are available to estimate proton density fat fraction (PDFF). (2) Methods: We compared four algorithms: complex-based with graph cut (GC), magnitude-based (MAG), magnitude-only estimation with Rician noise m
Externí odkaz:
https://doaj.org/article/e8e9e274d98b4471a6273e1aa36c7c8f
Autor:
Pál Novák Kaposi, Zita Zsombor, Aladár D. Rónaszéki, Bettina K. Budai, Barbara Csongrády, Róbert Stollmayer, Ildikó Kalina, Gabriella Győri, Viktor Bérczi, Klára Werling, Pál Maurovich-Horvat, Anikó Folhoffer, Krisztina Hagymási
Publikováno v:
Diagnostics, Vol 13, Iss 21, p 3353 (2023)
We aimed to develop a non-linear regression model that could predict the fat fraction of the liver (UEFF), similar to magnetic resonance imaging proton density fat fraction (MRI-PDFF), based on quantitative ultrasound (QUS) parameters. We measured an
Externí odkaz:
https://doaj.org/article/e009ad8577794582b13a2cc867bc496f
Autor:
Krzysztof Pyra, Maciej Szmygin, Viktor Bérczi, Maria Tsitskari, Michał Sojka, Grzegorz Pietras, Sławomir Woźniak
Publikováno v:
Videosurgery and Other Miniinvasive Techniques, Vol 16, Iss 1, Pp 243-248 (2020)
Externí odkaz:
https://doaj.org/article/66737383ec94447b9f3ec500b5609a49
Autor:
Bettina Katalin Budai, Ambrus Tóth, Petra Borsos, Veronica Grace Frank, Sonaz Shariati, Bence Fejér, Anikó Folhoffer, Ferenc Szalay, Viktor Bérczi, Pál Novák Kaposi
Publikováno v:
BMC Medical Imaging, Vol 20, Iss 1, Pp 1-11 (2020)
Abstract Background CT texture analysis (CTTA) has been successfully used to assess tissue heterogeneity in multiple diseases. The purpose of this work is to demonstrate the value of three-dimensional CTTA in the evaluation of diffuse liver disease.
Externí odkaz:
https://doaj.org/article/188732680e9e478284b2558f8a41a01d
Autor:
Zita Zsombor, Aladár D. Rónaszéki, Barbara Csongrády, Róbert Stollmayer, Bettina K. Budai, Anikó Folhoffer, Ildikó Kalina, Gabriella Győri, Viktor Bérczi, Pál Maurovich-Horvat, Krisztina Hagymási, Pál Novák Kaposi
Publikováno v:
Medicina, Vol 59, Iss 3, p 469 (2023)
Background and Objectives: This study aims to evaluate artificial intelligence-calculated hepatorenal index (AI-HRI) as a diagnostic method for hepatic steatosis. Materials and Methods: We prospectively enrolled 102 patients with clinically suspected
Externí odkaz:
https://doaj.org/article/88c03b965180467599fc868d39736254
Autor:
Richárd Milecz-Mitykó, Viktor Bérczi, Sándor Czibor, Zoltán Bánsághi, Gabriella Taba, Béla Kári, Tamás Györke
Publikováno v:
Radiation Protection Dosimetry. 199:989-994
The staff of the Radiation Protection Service of a European clinical center measured the radiation dose by type-tested thermoluminescent dosemeter systems to which the medical staff was exposed, to assess the effectiveness of current procedures and e
Autor:
Hunor Sarkadi, Judit Csőre, Dániel Sándor Veres, Nándor Szegedi, Levente Molnár, László Gellér, Viktor Bérczi, Edit Dósa
Publikováno v:
PLoS ONE, Vol 16, Iss 8, p e0256317 (2021)
PurposeTo evaluate factors associated with pseudoaneurysm (PSA) development.MethodsBetween January 2016 and May 2020, 30,196 patients had invasive vascular radiological or cardiac endovascular procedures that required arterial puncture. All patients
Externí odkaz:
https://doaj.org/article/0b820f7996624fbbb7b466d4ddb3d1ea
Autor:
Róbert Stollmayer, Bettina Katalin Budai, Aladár Rónaszéki, Zita Zsombor, Ildikó Kalina, Erika Hartmann, Gábor Tóth, Péter Szoldán, Viktor Bérczi, Pál Maurovich-Horvat, Pál Novák Kaposi
Publikováno v:
Cells, Vol 11, Iss 9, p 1558 (2022)
Liver tumors constitute a major part of the global disease burden, often making regular imaging follow-up necessary. Recently, deep learning (DL) has increasingly been applied in this research area. How these methods could facilitate report writing i
Externí odkaz:
https://doaj.org/article/8329d365809d4588bd0b593f04d8289e
Publikováno v:
Imaging. 14:73-81
The area of Artificial Intelligence is developing at a high rate. In the medical field, an extreme amount of data is created every day. As the images and the reports are quantifiable, the field of radiology aspires to deliver better, more efficient c