Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Vigneron-Tenorio Alberto"'
Autor:
Barroso, Evelia R. García, García-García, Juan Ignacio, Sánchez, Luis José Santana, Vigneron-Tenorio, Alberto
The aim of this paper is to study the $p$-Frobenius vector of affine semigroups $S\subset \mathbb N^q$; that is, the maximum element, with respect to a graded monomial order, with at most $p$ factorizations in $S$. We produce several algorithms to co
Externí odkaz:
http://arxiv.org/abs/2311.06050
Autor:
García-García, Juan Ignacio, Marín-Aragón, Daniel, Sánchez-Loureiro, Adrián, Vigneron-Tenorio, Alberto
Numerical semigroups have been extensively studied throughout the literature, and many of their invariants have been characterized. In this work, we generalize some of the most important results about symmetry, pseudo-symmetry, or fundamental gaps, t
Externí odkaz:
http://arxiv.org/abs/2305.05044
Autor:
Barroso, Evelia R. GarcÍa, GarcÍa-GarcÍa, Juan Ignacio, SÁnchez, Luis José Santana, Vigneron-Tenorio, Alberto
In their paper on the embeddings of the line in the plane, Abhyankar and Moh proved an important inequality, now known as the Abhyankar-Moh inequality, which can be stated in terms of the semigroup associated with the branch at infinity of a plane al
Externí odkaz:
http://arxiv.org/abs/2209.04232
Publikováno v:
Symmetry 2021, 13(7), 1125
We propose necessary and sufficient conditions for an integer matrix to be decomposable in terms of its Hermite normal form. Specifically, to each integer matrix of maximal row rank without columns of zeros, we associate a symmetric whole matrix whos
Externí odkaz:
http://arxiv.org/abs/2003.01453
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 1134-1144 (2021)
Weierstrass semigroups are well known along the literature. We present a new family of non-Weierstrass semigroups which can be written as an intersection of Weierstrass semigroups. In addition, we provide methods for computing non-Weierstrass semigro
Externí odkaz:
https://doaj.org/article/996a99ba3dfb4089b4b60354b7809a68
This work generalizes the short resolution given in Proc. Amer. Math. Soc. \textbf{131}, 4, (2003), 1081--1091, to any affine semigroup. Moreover, a characterization of Ap\'{e}ry sets is given. This characterization lets compute Ap\'{e}ry sets of aff
Externí odkaz:
http://arxiv.org/abs/1512.00345
We provide algorithmic methods to check the Cohen--Macaulayness, Buchsbaumness and/or Gorensteiness of some families of semigroup rings that are constructed from the dilation of bounded convex polyhedrons of $\R^3_{\geq}$. Some families of semigroup
Externí odkaz:
http://arxiv.org/abs/1507.04536
Publikováno v:
Journal of Symbolic Computation 58 (2013) 103--116
The aim of this work is to reduce the complexity of the available algorithms for computing the generator sets of a semigroup ideal by using the Hermite normal form. In order to achieve it we introduce the concept of decomposable semigroup. If a semig
Externí odkaz:
http://arxiv.org/abs/1006.2557