Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Vidali, Janoš"'
Autor:
Potočnik, Primož, Vidali, Janoš
In this paper, a complete classification of finite simple cubic vertex-transitive graphs of girth $6$ is obtained. It is proved that every such graph, with the exception of the Desargues graph on $20$ vertices, is either a skeleton of a hexagonal til
Externí odkaz:
http://arxiv.org/abs/2005.01635
We present the tables of feasible parameters of primitive $3$-class $Q$-polynomial association schemes and $4$- and $5$-class $Q$-bipartite association schemes (on up to $2800$, $10000$, and $50000$ vertices, respectively), accompanied by a number of
Externí odkaz:
http://arxiv.org/abs/1908.10081
Autor:
Berčič, Katja, Vidali, Janoš
In this paper, we present DiscreteZOO, a project which illustrates some of the possibilities for computer-supported management of collections of finite combinatorial (discrete) objects, in particular graphs with a high degree of symmetry. DiscreteZOO
Externí odkaz:
http://arxiv.org/abs/1812.05921
We complete the classification of tight $4$-designs in Hamming association schemes $H(n,q)$, i.e., that of tight orthogonal arrays of strength $4$, which had been open since a result by Noda (1979). To do so, we construct an association scheme attach
Externí odkaz:
http://arxiv.org/abs/1809.07553
Autor:
Vidali, Janoš
Publikováno v:
J. Vidali. Using symbolic computation to prove nonexistence of distance-regular graphs. Electron. J. Combin., 25(4)#P4.21, 2018. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p21
A package for the Sage computer algebra system is developed for checking feasibility of a given intersection array for a distance-regular graph. We use this tool to show that there is no distance-regular graph with intersection array $\{(2r+1)(4r+1)(
Externí odkaz:
http://arxiv.org/abs/1803.10797
Autor:
Potočnik, Primož, Vidali, Janoš
Publikováno v:
Ars Mathematica Contemporanea, 17(2):349--368, 2019
We introduce a notion of a girth-regular graph as a $k$-regular graph for which there exists a non-descending sequence $(a_1, a_2, \dots, a_k)$ (called the signature) giving, for every vertex $u$ of the graph, the number of girth cycles the edges wit
Externí odkaz:
http://arxiv.org/abs/1802.01881
Autor:
Potočnik, Primož, Vidali, Janoš
Publikováno v:
In Discrete Mathematics March 2022 345(3)
A partial semimetric on V_n={1, ..., n} is a function f=((f_{ij})): V_n^2 -> R_>=0 satisfying f_ij=f_ji >= f_ii and f_ij+f_ik-f_jk-f_ii >= 0 for all i,j,k in V_n. The function f is a weak partial semimetric if f_ij >= f_ii is dropped, and it is a str
Externí odkaz:
http://arxiv.org/abs/1101.0517
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.