Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Victoria Hoskins"'
Publikováno v:
Electronic Research Archive, Vol 30, Iss 1, Pp 66-89 (2022)
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion
Externí odkaz:
https://doaj.org/article/97a551264b2047feafa96949ff156ae5
Publikováno v:
The Quarterly Journal of Mathematics, 72, 1-2, pp. 71-114
The Quarterly Journal of Mathematics, 72, 71-114
The Quarterly Journal of Mathematics, 72, 71-114
We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky's category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth proje
Autor:
Victoria Hoskins, Florent Schaffhauser
Publikováno v:
Int.J.Math.
Int.J.Math., 2019, 30 (02), pp.1950007. ⟨10.1142/S0129167X19500071⟩
International Journal of Mathematics
Int.J.Math., 2019, 30 (02), pp.1950007. ⟨10.1142/S0129167X19500071⟩
International Journal of Mathematics
We study algebraic actions of finite groups of quiver automorphisms on moduli spaces of quiver representations. We decompose the fixed loci using group cohomology and we give a modular interpretation of each component. As an application, we construct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed3166c28b5e29dfc9855a4df926a629
https://hal.archives-ouvertes.fr/hal-02088605
https://hal.archives-ouvertes.fr/hal-02088605
Autor:
Victoria Hoskins
This is a review article exploring similarities between moduli of quiver representations and moduli of vector bundles over a smooth projective curve. After describing the basic properties of these moduli problems and constructions of their moduli spa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a1a193fd356e8ca9dae947243e8e92c
http://arxiv.org/abs/1809.05738
http://arxiv.org/abs/1809.05738
Autor:
Jill Firth, Ben Parker, Jayne Little, Christopher Astbury, Surabhi Wig, Victoria Hoskins, Sahena Haque, Dipak Roy, Rebecca Heaton, Sharon Christy-Kilner, Audrey Low
Publikováno v:
Rheumatology. 57
Publikováno v:
Geometry of Moduli ISBN: 9783319948805
Recent results in geometric invariant theory (GIT) for non-reductive linear algebraic group actions allow us to stratify quotient stacks of the form [X/H], where X is a projective scheme and H is a linear algebraic group with internally graded unipot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cd1285c0235970cdf60ba120fa92193b
https://doi.org/10.1007/978-3-319-94881-2_1
https://doi.org/10.1007/978-3-319-94881-2_1
Autor:
Victoria Hoskins
For a complex reductive group G acting linearly on a complex affine space V with respect to a character, we show two stratifications of V associated to this action (and a choice of invariant inner product on the Lie algebra of the maximal compact sub
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27af069bae8b133b96e3c86cb50f5f93
http://doc.rero.ch/record/302126/files/hat046.pdf
http://doc.rero.ch/record/302126/files/hat046.pdf
Autor:
Florent Schaffhauser, Victoria Hoskins
Publikováno v:
Annales de l'Institut Fourier
For a perfect field $k$, we study actions of the absolute Galois group of $k$ on the $\bar{k}$-valued points of moduli spaces of quiver representations over $k$; the fixed locus is the set of $k$-rational points and we obtain a decomposition of this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::884dfe088c9bbc5c88a58079ecf28e5a
http://arxiv.org/abs/1704.08624
http://arxiv.org/abs/1704.08624
Autor:
Victoria Hoskins
Publikováno v:
Trends in Mathematics ISBN: 9783319488103
We give an example of a linear action of the additive group on an affine algebraic variety arising in the construction of an algebraic symplectic reduction, with non-finitely generated invariant ring.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::602b392c42483167172df3a210b8606b
https://doi.org/10.1007/978-3-319-48812-7_5
https://doi.org/10.1007/978-3-319-48812-7_5
Autor:
Frances Kirwan, Victoria Hoskins
Publikováno v:
Proceedings of the London Mathematical Society. 105:852-890
When a reductive group $G$ acts linearly on a complex projective scheme $X$ there is a stratification of $X$ into $G$-invariant locally closed subschemes, with an open stratum $X^{ss}$ formed by the semistable points in the sense of Mumford's geometr