Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Victor Picheny"'
Autor:
Mickaël Binois, Victor Picheny
Publikováno v:
Journal of Statistical Software, Vol 89, Iss 1, Pp 1-30 (2019)
The GPareto package for R provides multi-objective optimization algorithms for expensive black-box functions and an ensemble of dedicated uncertainty quantification methods. Popular methods such as efficient global optimization in the mono-objective
Externí odkaz:
https://doaj.org/article/de78bb3a92074a08859ac1e2d0753b96
Publikováno v:
PLoS ONE, Vol 12, Iss 5, p e0176815 (2017)
Accounting for the interannual climatic variations is a well-known issue for simulation-based studies of environmental systems. It often requires intensive sampling (e.g., averaging the simulation outputs over many climatic series), which hinders man
Externí odkaz:
https://doaj.org/article/8df139f59fe041e29160234e9acbc31b
Autor:
Victor Picheny, Alana L. Moore, Cindy E. Hauser, Libby Rumpff, Michael C. Runge, Abbey E. Camaclang, Joslin L. Moore
Publikováno v:
Conservation Biology. 35:1639-1649
Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource a
Publikováno v:
Journal of Global Optimization
Journal of Global Optimization, In press, ⟨10.1007/s10898-020-00920-0⟩
Journal of Global Optimization, Springer Verlag, In press
Journal of Global Optimization, In press, ⟨10.1007/s10898-020-00920-0⟩
Journal of Global Optimization, Springer Verlag, In press
International audience; We consider the optimization of a computer model where each simulation either fails or returns a valid output performance. We first propose a new joint Gaussian process model for classification of the inputs (computation failu
Publikováno v:
Aalto University
Gaussian processes (GPs) are the main surrogate functions used for sequential modelling such as Bayesian Optimization and Active Learning. Their drawbacks are poor scaling with data and the need to run an optimization loop when using a non-Gaussian l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dad744981b0ee330746fa3a7802f4ebe
Publikováno v:
Journal of Global Optimization
Journal of Global Optimization, 2022, ⟨10.1007/s10898-022-01245-w⟩
Journal of Global Optimization, Springer Verlag, In press
Journal of Global Optimization, 2022, ⟨10.1007/s10898-022-01245-w⟩
Journal of Global Optimization, Springer Verlag, In press
International audience; Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7540bbc45160ca232316f31ca3a21b8e
https://hal.science/hal-03450072v2/document
https://hal.science/hal-03450072v2/document
Autor:
Victor Picheny, Rodolphe Le Riche
Publikováno v:
Structural and Multidisciplinary Optimization
Structural and Multidisciplinary Optimization, 2021, ⟨10.1007/s00158-021-02977-1⟩
Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2021, ⟨10.1007/s00158-021-02977-1⟩
Structural and Multidisciplinary Optimization, 2021, ⟨10.1007/s00158-021-02977-1⟩
Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2021, ⟨10.1007/s00158-021-02977-1⟩
International audience; It is commonly believed that Bayesian optimization (BO) algorithms are highly efficient for optimizing numerically costly functions. However, BO is not often compared to widely different alternatives, and is mostly tested on n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32b45fb6a47ce1ef8147d4148bd0e248
https://hal.science/hal-03188590
https://hal.science/hal-03188590
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783030676636
ECML/PKDD (3)
ECML/PKDD (3)
Many machine learning models require a training procedure based on running stochastic gradient descent. A key element for the efficiency of those algorithms is the choice of the learning rate schedule. While finding good learning rates schedules usin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8b2557d8824639e30fc1cac49f101fea
https://doi.org/10.1007/978-3-030-67664-3_26
https://doi.org/10.1007/978-3-030-67664-3_26
Publikováno v:
Structural and Multidisciplinary Optimization
Structural and Multidisciplinary Optimization, 2020, 61, pp.2343-2361. ⟨10.1007/s00158-019-02458-6⟩
Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2020, 61, pp.2343-2361. ⟨10.1007/s00158-019-02458-6⟩
Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2019
Structural and Multidisciplinary Optimization, 2020, 61, pp.2343-2361. ⟨10.1007/s00158-019-02458-6⟩
Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2020, 61, pp.2343-2361. ⟨10.1007/s00158-019-02458-6⟩
Structural and Multidisciplinary Optimization, Springer Verlag (Germany), 2019
International audience; Parametric shape optimization aims at minimizing an objective function f(x) where x are CAD parameters. This task is difficult when f is the output of an expensive-to-evaluate numerical simulator and the number of CAD paramete
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39c163582fc96512046dbe45460f0420
https://hal-emse.ccsd.cnrs.fr/emse-02390627
https://hal-emse.ccsd.cnrs.fr/emse-02390627
Autor:
Hilaire Drouineau, Dimo Brockhoff, Victor Picheny, Stéphanie Mahévas, Lauriane Rouan, Rodolphe Le Riche, Patrick Lambert, Robert Faivre, Sigrid Lehuta, Nicolas Dumoulin, Christophe Soulié
pdf available at https://www.preprints.org/manuscript/201912.0249/v1; Calibrating ecological models or making decisions with them is an optimisation problem with challenging methodological issues. Depending on the optimisation formulation, there may
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d167bb76d7e8d0a39d796c3437ab2f65
https://hal.inria.fr/hal-02418667
https://hal.inria.fr/hal-02418667