Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Victor M. Panaretos"'
Autor:
Victor M. Panaretos, Yoav Zemel
This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also
Autor:
John Haigh
Publikováno v:
The Mathematical Gazette. 101:573-574
Autor:
Peter Guttorp, David R. Brillinger
Publikováno v:
Selected Works of David Brillinger ISBN: 9781461413431
David began working on this paper while he held appointments at Princeton and Bell Labs, and completed it at the London School of Economics. He recalls (Panaretos [16]) that his motivation to consider this problem came from Don Fraser's program of st
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71bcbe11f277f3193d505c8a565aa380
https://doi.org/10.1007/978-1-4614-1344-8_1
https://doi.org/10.1007/978-1-4614-1344-8_1
Publikováno v:
Oberwolfach Reports. 16:1697-1735
Autor:
Alessia Caponera, Victor M. Panaretos
We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1f1371cf338a45bea9e19545257ae2c
http://arxiv.org/abs/2202.09287
http://arxiv.org/abs/2202.09287
Publikováno v:
Bernoulli. 27
We develop theory and methodology for the problem of nonparametric registration of functional data that have been subjected to random deformation (warping) of their time scale. The separation of this phase variation ("horizontal" variation) from the
Autor:
Guttorp, Peter, Brillinger, David
Publikováno v:
Selected Works of David Brillinger; 2012, p3-9, 7p
We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain $\Omega$ of a rectangular domain $I\times I$ to a covariance kernel on the entire domain $I\times I$. For a broad class
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ba3b207e198bad821af857f083e9ff9
Non-parametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c6c182a3580d6fe252b5ee7c65d55bd
Autor:
Yoav Zemel, Victor M. Panaretos
Publikováno v:
An Invitation to Statistics in Wasserstein Space ISBN: 9783030384371
When given measures μ1, …, μN are supported on the real line, computing their Frechet mean \(\bar \mu \) is straightforward (Sect. 3.1.4). This is in contrast to the multivariate case, where, apart from the important yet special case of compatibl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b2f0e7510f5aa4ba347e51545030dd1d
https://doi.org/10.1007/978-3-030-38438-8_5
https://doi.org/10.1007/978-3-030-38438-8_5