Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Victor Katsnelson"'
Autor:
Victor Katsnelson
Publikováno v:
St. Petersburg Mathematical Journal. 30:457-469
Autor:
Victor Katsnelson
Publikováno v:
Analysis as a Tool in Mathematical Physics ISBN: 9783030315306
We study the integral transform which appeared in a different form in Akhiezer’s textbook “Lectures on Integral Transforms”.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cf091d337635b35f7b52324e2f18e755
https://doi.org/10.1007/978-3-030-31531-3_23
https://doi.org/10.1007/978-3-030-31531-3_23
Autor:
Victor Katsnelson
Publikováno v:
Integral Equations and Operator Theory. 86:439-452
Given a pair \(A,B\) of matrices of size \(n\times n\), we consider the matrix function \(e^{tA+B}\) of the variable \(t\in \mathbb {C}\). If the matrix \(A\) is Hermitian, the matrix function \(e^{tA+B}\) is representable as the bilateral Laplace tr
Autor:
Victor Katsnelson
Publikováno v:
Arnold Mathematical Journal. 2:439-448
Let $\nu_0(t),\nu_1(t),\,\ldots\,,\nu_n(t)$ be the roots of the equation $R(z)=t$, where $R(z)$ is a rational function of the form \[R(z)=z+\sum\limits_{k=1}^n\frac{\alpha_k}{z-\mu_k},\] $\mu_k$ are pairwise different real numbers, $\alpha_k>0,\,1\le
Autor:
Victor Katsnelson
Publikováno v:
Integral Equations and Operator Theory. 86:113-119
The BMV conjecture states that for $n\times n$ Hermitian matrices $A$ and $B$ the function $f_{A,B}(t)=trace{\, } e^{tA+B}$ is exponentially convex. Recently the BMV conjecture was proved by Herbert Stahl. The proof of Herbert Stahl is based on ingen
Autor:
Victor Katsnelson
Publikováno v:
Complex Analysis and Operator Theory. 11:857-873
To \(2\times 2\) matrix G with complex entries, the sequence of Laurent polynomial \(L_n(z,G)={{\mathrm{tr}}}\left( G\left[ \begin{matrix} z&{}0\\ 0&{}z^{-1} \end{matrix} \right] G^{*}\right) ^n\) is related. It turns out that for each n, the family
Autor:
Victor Katsnelson
Publikováno v:
Integral Equations and Operator Theory. 85:381-398
Given positive numbers a and b, the function \({\sqrt{at^2+b}}\) is exponentially convex function of t on the whole real axis. Three proofs of this result are presented.
Autor:
Victor Katsnelson
Publikováno v:
Complex Analysis and Dynamical Systems VI. :141-157
Autor:
Victor Katsnelson
Publikováno v:
Complex Analysis and Operator Theory. 11:843-855
The BMV conjecture states that for \(n\times n\) Hermitian matrices \(A\) and \(B\) the function \(f_{A,B}(t)={{\mathrm{trace\,}}}e^{tA+B}\) is exponentially convex. Recently the BMV conjecture was proved by Herbert Stahl. The proof of Herbert Stahl
Autor:
Victor Katsnelson
Publikováno v:
Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations ISBN: 9783319688480
We consider the formal prolate spheroid differential operator on a finite symmetric interval and describe all its self-adjoint boundary conditions. Only one of these boundary conditions corresponds to a self-adjoint differential operator which commut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a1b8582730bf791ed9c3c76d77ee1fae
https://doi.org/10.1007/978-3-319-68849-7_14
https://doi.org/10.1007/978-3-319-68849-7_14