Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Victor Kalvin"'
Autor:
Victor Kalvin
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
Autor:
Victor Kalvin
Publikováno v:
The Journal of Geometric Analysis. 31:12347-12374
We study extremal properties of the determinant of Friedrichs selfadjoint Laplacian on the Euclidean isosceles triangle envelopes of fixed area as a function of angles. We deduce an explicit closed formula for the determinant. Small-angle asymptotics
Autor:
Victor Kalvin, Alexey Kokotov
Publikováno v:
Canadian Mathematical Bulletin
We find an explicit expression for the zeta-regularized determinant of (the Friedrichs extension) of the Laplacian on a compact Riemann surface of genus one with conformal metric of curvature $1$ having a single conical singularity of angle $4\pi$.
Autor:
Victor Kalvin
We explicitly express the spectral determinant of Friederichs Dirichlet Laplacians on the 2-dimensional hyperbolic (Gaussian curvature -1) cones in terms of the cone angle and the geodesic radius of the boundary. The related results in the recent pap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c6150f67ad49fde7716f84bc7218812
Autor:
Victor Kalvin
Publikováno v:
The Journal of Geometric Analysis. 29:785-798
Let $\mathsf m$ be any conical (or smooth) metric of finite volume on the Riemann sphere $\Bbb CP^1$. On a compact Riemann surface $X$ of genus $g$ consider a meromorphic funciton $f: X\to {\Bbb C}P^1$ such that all poles and critical points of $f$ a
Autor:
Victor Kalvin, Alexey Kokotov
Publikováno v:
International Mathematics Research Notices
Autor:
Victor Kalvin
We present and prove Polyakov-Alvarez type comparison formulas for the determinants of Friederichs extensions of Laplacians corresponding to conformally equivalent metrics on a compact Riemann surface with conical singularities. In particular, we fin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee052e3d01d2d57f94a5f60c73afcdad
Autor:
Victor Kalvin
Publikováno v:
Journal of Mathematical Analysis and Applications. 432:749-760
We study spectral properties of the Neumann Laplacian on manifolds with quasicylindrical ends. In particular, we prove exponential decay of the non-threshold eigenfunctions and show that the eigenvalues can accumulate only at thresholds of the absolu
Autor:
Victor Kalvin
Publikováno v:
SIAM Journal on Numerical Analysis. 49:309-330
We study the scattering of acoustic or electromagnetic waves at diffraction gratings in inhomogeneous media. The refractive index stabilizes to 1 as the distance to the grating increases. Outgoing solutions are characterized by means of the limiting
Autor:
Victor Kalvin
Publikováno v:
Proceedings of the St. Petersburg Mathematical Society, Volume IX. :51-92