Zobrazeno 1 - 10
of 143
pro vyhledávání: '"Victor Ivrii"'
Autor:
Victor Ivrii
Publikováno v:
Bulletin of Mathematical Sciences, Vol 6, Iss 3, Pp 379-452 (2016)
Abstract We discuss the asymptotics of the eigenvalue counting function for partial differential operators and related expressions paying the most attention to the sharp asymptotics. We consider Weyl asymptotics, asymptotics with Weyl principal parts
Externí odkaz:
https://doaj.org/article/28ace18888fa4bc7b269c43dff4cd37c
Autor:
Misha Gromov, Yu. A. Kordyukov, Toshikazu Sunada, Maxim Braverman, Peter Kuchment, Victor Matveevich Buchstaber, Leonid Friedlander, Victor Ivrii, Askold Khovanskii, Sergey Novikov, Vladimir Maz'ya
Publikováno v:
Russian Mathematical Surveys. 75:1143-1152
Autor:
Sergei Petrovich Novikov, Yuri Kordyukov, Mikhail Leonidovich Gromov, Askold Khovanskii, Maxim Braverman, Victor Ivrii, Victor Matveevich Buchstaber, Toshikazu Sunada, Leonid Friedlander, Peter Kuchment, Vladimir Maz'ya
Publikováno v:
Uspekhi Matematicheskikh Nauk. 75:162-170
Autor:
Victor Ivrii
Publikováno v:
Microlocal Analysis, Sharp Spectral Asymptotics and Applications V ISBN: 9783030305604
In this article we consider fractional Laplacians which seem to be of interest to probability theory. This is a rather new class of operators for us but our methods works (with a twist, as usual). Our main goal is to derive a two-term asymptotics as
Autor:
Victor Ivrii
Publikováno v:
Trends in Mathematics ISBN: 9783030373252
Microlocal Analysis, Sharp Spectral Asymptotics and Applications V ISBN: 9783030305604
Microlocal Analysis, Sharp Spectral Asymptotics and Applications V ISBN: 9783030305604
Under certain assumptions we derive a complete semiclassical asymptotics of the spectral function \(e_{h,\varepsilon }(x, x,\lambda )\) for a scalar operator $$\begin{aligned} A_\varepsilon (x, hD)= A^0(hD) + \varepsilon B(x, hD), \end{aligned}$$ whe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0cb9717d3d233e977880feb114fad1e
https://doi.org/10.1007/978-3-030-37326-9_12
https://doi.org/10.1007/978-3-030-37326-9_12
Autor:
Victor Ivrii
Publikováno v:
Microlocal Analysis, Sharp Spectral Asymptotics and Applications V ISBN: 9783030305604
The purpose of this Part is to apply semiclassical methods developed in the previous parts to the theory of heavy atoms and molecules. Because of this we combine our semiclassical methods with the traditional methods of that theory, mainly function-a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::224cc78aff55a99cb93f6eaa9f216217
https://doi.org/10.1007/978-3-030-30561-1_25
https://doi.org/10.1007/978-3-030-30561-1_25
Autor:
Victor Ivrii
No magnetic field case -- The case of external magnetic field -- The case of self-generated magnetic field,- The case of combined magnetic field -- Articles on asymptotics -- 100 years of Weyl's law.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::053fc466c7add21ce5bca6756549d11a
https://doi.org/10.1007/978-3-030-30561-1
https://doi.org/10.1007/978-3-030-30561-1
Autor:
Victor Ivrii
Publikováno v:
Microlocal Analysis, Sharp Spectral Asymptotics and Applications IV ISBN: 9783030305444
This Chapter is a continuation of Chapter 13 and Sections 4.6 and 5.4. Here we deal with the Schrodinger operator with the strong magnetic field in dimensions 2 and 3 under weak smoothness assumptions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::89b3729c0588f5acae23bc4850892bd8
https://doi.org/10.1007/978-3-030-30545-1_18
https://doi.org/10.1007/978-3-030-30545-1_18
Autor:
Victor Ivrii
Publikováno v:
Microlocal Analysis, Sharp Spectral Asymptotics and Applications I ISBN: 9783030305567
This chapter is devoted to even more specialized results than the previous one. In Section 6.1 we extend some of the above results to conjoint spectral asymptotics for families of commuting operators (general or scalar). Then in Section 6.2 we consid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::448722341a9073f06218c2c754574a9e
https://doi.org/10.1007/978-3-030-30557-4_6
https://doi.org/10.1007/978-3-030-30557-4_6