Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Vicente Ortega-Cejas"'
Publikováno v:
Bulletin of Mathematical Biology. 70:1937-1956
We analyze traveling front solutions for a class of reaction-transport Lattice Models (LMs) in order to claim their interest on the description of biological invasions. As lattice models are spatially discrete models, we address here the problem of i
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 375:51-64
The front dynamics in reaction–diffusion equations with a piecewise linear reaction term is studied. A transition from pushed-to-pulled fronts when they propagate into the unstable state is found using a variational principle. This transition occur
Publikováno v:
The European Physical Journal B. 53:503-507
The speed of pulled fronts for parabolic fractional-reaction-dispersal equations is derived and analyzed. From the continuous-time random walk theory we derive these equations by considering long-tailed distributions for waiting times and dispersal d
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 367:283-292
On the basis of the Cook model, we propose a delayed-growth reaction–diffusion model with an age-dependent disperser–nondisperser transition. We compare the speed of migration fronts between our model and the hyperbolic generalization of the Cook
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 366:299-307
The effect of the delay time on the speed of wave fronts for interacting–diffusing models is studied analytically and numerically, both for predator–prey and competition models. It is shown that the interaction parameters may be evaluated from th
Autor:
Vicente Ortega-Cejas, Vicenç Méndez
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
From the continuous-time random walk scheme and assuming a L\'evy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selecti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::914e24e8aa7d2113c97155f4437da337
https://ddd.uab.cat/record/118205
https://ddd.uab.cat/record/118205
Publikováno v:
© Physical Review E, 2004, vol. 69, núm. 3, p. 031909
Articles publicats (D-F)
DUGiDocs – Universitat de Girona
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Scopus-Elsevier
Recercat. Dipósit de la Recerca de Catalunya
Articles publicats (D-F)
DUGiDocs – Universitat de Girona
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Scopus-Elsevier
Recercat. Dipósit de la Recerca de Catalunya
Recently, it has been shown that the speed of virus infections can be explained by time-delayed reaction-diffusion [J. Fort and V. Mendez, Phys. Rev. Lett. 89, 178101 (2002)], but no analytical solutions were found. Here we derive formulas for the fr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5dcf833f197abacccff1ce5d479f0e22
http://hdl.handle.net/10256/7614
http://hdl.handle.net/10256/7614