Zobrazeno 1 - 10
of 129
pro vyhledávání: '"Viana, Celso"'
In this work we studied the stability of the family of operators $L_a=\Delta-aS$, $a\in\mathbb R$, in a warped product of an infinite interval or real line by one compact manifold, where $\Delta$ is the Laplacian and $S$ is the scalar curvature of th
Externí odkaz:
http://arxiv.org/abs/2409.08818
Autor:
Pallete, Franco Vargas, Viana, Celso
We study the Cheeger isoperimetric constant as a functional in the space of convex co-compact hyperbolic 3-manifolds which are either quasi-Fuchsian or acylindrical. We prove that the global maximum is attained uniquely at the Fuchsian locus.
Co
Co
Externí odkaz:
http://arxiv.org/abs/2311.12162
Isoperimetric interpretation for the renormalized volume of convex co-compact hyperbolic 3-manifolds
Autor:
Pallete, Franco Vargas, Viana, Celso
We reinterpret the renormalized volume as the asymptotic difference of the isoperimetric profiles for convex co-compact hyperbolic 3-manifolds. By similar techniques we also prove a sharp Minkowski inequality for horospherically convex sets in $\math
Externí odkaz:
http://arxiv.org/abs/2105.11540
Autor:
Viana, Celso
We classify the volume preserving stable hypersurfaces in the real projective space $\mathbb{RP}^n$. As a consequence, the solutions of the isoperimetric problem are tubular neighborhoods of projective subspaces $\mathbb{RP}^k\subset \mathbb{RP}^n$ (
Externí odkaz:
http://arxiv.org/abs/1907.09445
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Barbosa, Ezequiel, Viana, Celso
We extend to higher codimension earlier characterization of the equatorial disk and the critical catenoid by a pinching condition on the length of their second fundamental form among free boundary minimal surfaces in the three dimensional Euclidean b
Externí odkaz:
http://arxiv.org/abs/1808.04341
Autor:
Barbosa, Ezequiel, Viana, Celso
It is proved by Brendle in [4] that the equatorial disk $D^k$ has least area among $k$-dimensional free boundary minimal surfaces in the Euclidean ball $B^n$. By comparing the excess of free boundary minimal surfaces with the excess of the associated
Externí odkaz:
http://arxiv.org/abs/1807.07408
Autor:
Viana, Celso
We prove that orientable index one minimal surfaces in spherical space forms with large fundamental group have genus at most two. This confirms a conjecture of R. Schoen for an infinite class of 3-manifolds.
Comment: 18 pages
Comment: 18 pages
Externí odkaz:
http://arxiv.org/abs/1803.05882
Autor:
Viana, Celso
We study the evolution of the Whitney sphere along the Lagrangian mean curvature flow. We show that equivariant Lagrangian spheres in $\mathbb{C}^n$ satisfying mild geometric assumptions collapse to a point in finite time and the tangent flows conver
Externí odkaz:
http://arxiv.org/abs/1802.02108
Autor:
Viana, Celso
We solve the isoperimetric problem in the Lens spaces with large fundamental group. Namely, we prove that the isoperimetric surfaces are geodesic spheres or tori of revolution about geodesics. We also show that the isoperimetric problem in L(3,1) and
Externí odkaz:
http://arxiv.org/abs/1702.05816