Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Veys, Wim"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Approximation Theory 153 (2008), 225--256
We consider n one-dimensional Brownian motions, such that n/2 Brownian motions start at time t=0 in the starting point a and end at time t=1 in the endpoint b and the other n/2 Brownian motions start at time t=0 at the point -a and end at time t=1 in
Externí odkaz:
http://arxiv.org/abs/math/0701923
Publikováno v:
Novon; 2024, Vol. 32, p97-113, 17p
Autor:
Avni, Nir, Klopsch, Benjamin, Onn, Uri, Voll, Christopher, Campillo, Antonio, Cardona, Gabriel, Melle-Hernández, Alejandro, Veys, Wim, Zúñiga-Galindo, Wilson A.
Using the Kirillov orbit method, novel methods from p-adic integration and Clifford theory, we study representation zeta functions associated to compact p-adic analytic groups. In particular, we give general estimates for the abscissae of convergence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1bedf932e05d3a347d2f56e18a894507
Autor:
Van Hirtum, Jasper
The main topic of this thesis is the study of classical and Hilbert modular forms and computational aspects of their q-expansions. The coefficients of q-expansions of eigenforms are particularly interesting because of their arithmetic significance. M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::201d32813b69fcd8fa7da18afb0267d3
https://lirias.kuleuven.be/handle/123456789/585309
https://lirias.kuleuven.be/handle/123456789/585309
Autor:
van Hirtum, Jasper
The main topic of this thesis is the study of classical and Hilbert modular forms and computational aspects of their q-expansions. The coefficients of q-expansions of eigenforms are particularly interesting because of their arithmetic significance. M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2658::70526d1b6c4f665584cc3c1d4c587032
http://orbilu.uni.lu/handle/10993/31611
http://orbilu.uni.lu/handle/10993/31611