Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Veys, Wim"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Approximation Theory 153 (2008), 225--256
We consider n one-dimensional Brownian motions, such that n/2 Brownian motions start at time t=0 in the starting point a and end at time t=1 in the endpoint b and the other n/2 Brownian motions start at time t=0 at the point -a and end at time t=1 in
Externí odkaz:
http://arxiv.org/abs/math/0701923
Publikováno v:
Novon; 2024, Vol. 32, p97-113, 17p
Autor:
Avni, Nir, Klopsch, Benjamin, Onn, Uri, Voll, Christopher, Campillo, Antonio, Cardona, Gabriel, Melle-Hernández, Alejandro, Veys, Wim, Zúñiga-Galindo, Wilson A.
Using the Kirillov orbit method, novel methods from p-adic integration and Clifford theory, we study representation zeta functions associated to compact p-adic analytic groups. In particular, we give general estimates for the abscissae of convergence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1bedf932e05d3a347d2f56e18a894507
Autor:
Chambille, Saskia
Dans cette thèse nous étudions des sommes exponentielles et des intégrales p-adiques, en utilisant la théorie des modèles et la géométrie. La première partie traite des sommes exponentielles dans des corps P-minimaux. La deuxième partie exam
Externí odkaz:
http://www.theses.fr/2018LIL1I023/document
Autor:
Van Hirtum, Jasper
The main topic of this thesis is the study of classical and Hilbert modular forms and computational aspects of their q-expansions. The coefficients of q-expansions of eigenforms are particularly interesting because of their arithmetic significance. M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::201d32813b69fcd8fa7da18afb0267d3
https://lirias.kuleuven.be/handle/123456789/585309
https://lirias.kuleuven.be/handle/123456789/585309
Autor:
van Hirtum, Jasper
The main topic of this thesis is the study of classical and Hilbert modular forms and computational aspects of their q-expansions. The coefficients of q-expansions of eigenforms are particularly interesting because of their arithmetic significance. M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2658::70526d1b6c4f665584cc3c1d4c587032
http://orbilu.uni.lu/handle/10993/31611
http://orbilu.uni.lu/handle/10993/31611
Publikováno v:
Nephrology Dialysis Transplantation; Feb2002, Vol. 17 Issue 2, p210-212, 3p
This title introduces the theory of arc schemes in algebraic geometry and singularity theory, with special emphasis on recent developments around the Nash problem for surfaces. The main challenges are to understand the global and local structure of a