Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Vető, Bálint"'
Publikováno v:
Sci. Rep., 14 (2024), no. 20592
Human longevity leaders with remarkably long lifespan play a crucial role in the advancement of longevity research. In this paper, we propose a stochastic model to describe the evolution of the age of the oldest person in the world by a Markov proces
Externí odkaz:
http://arxiv.org/abs/2409.03353
Autor:
Vető, Bálint
Publikováno v:
Electron. Commun. Probab., 29 (2024), no. 31, 1-14
We prove that the rescaled one-point fluctuations of the boundary of the percolation cluster in the Bernoulli-Exponential first passage percolation around the diagonal converge to a new family of distributions. The limit law is indexed by the rescale
Externí odkaz:
http://arxiv.org/abs/2306.09073
Autor:
Vető, Bálint, Virág, Bálint
Coalescing simple random walks in the plane form an infinite tree. A natural directed distance on this tree is given by the number of jumps between branches when one is only allowed to move in one direction. The Brownian web distance is the scale-inv
Externí odkaz:
http://arxiv.org/abs/2305.15246
Autor:
Kiss, József, Vető, Bálint
Publikováno v:
Electron. Commun. Probab., 27 (2022), no. 44, 1-12
We consider the elephant random walk with general step distribution. We calculate the first four moments of the limiting distribution of the position rescaled by $n^\alpha$ in the superdiffusive regime where $\alpha$ is the memory parameter. This ext
Externí odkaz:
http://arxiv.org/abs/2112.00066
Autor:
Vető, Bálint
Publikováno v:
Stochastic Process. Appl. 148 (2022), 227-266
We investigate the asymptotic fluctuation of three interacting particle systems: the geometric q-TASEP, the geometric q-PushTASEP and the q-PushASEP. We prove that the rescaled particle position converges to the GUE Tracy-Widom distribution in the ho
Externí odkaz:
http://arxiv.org/abs/2106.14013
Autor:
Ferrari, Patrik L., Vető, Bálint
Publikováno v:
Electron. Commun. Probab. 26 (2021), no. 15, 1-14
In this paper we consider the limiting distribution of KPZ growth models with random but not stationary initial conditions introduced in [Chhita-Ferrari-Spohn 2018]. The one-point distribution of the limit is given in terms of a variational problem.
Externí odkaz:
http://arxiv.org/abs/2007.13496
Autor:
Ferrari, Patrik L., Vető, Bálint
Publikováno v:
Ann. Appl. Probab. 31 (2021), no. 1, 284-320
We consider uniform random domino tilings of the restricted Aztec diamond which is obtained by cutting off an upper triangular part of the Aztec diamond by a horizontal line. The restriction line asymptotically touches the arctic circle that is the l
Externí odkaz:
http://arxiv.org/abs/1909.10840
Autor:
Talyigás, Zsófia, Vető, Bálint
Publikováno v:
J. Theoret. Probab. 33 (2020), no. 3, 1426-1444
We consider two directed polymer models in the Kardar-Parisi-Zhang (KPZ) universality class: the O'Connell-Yor semi-discrete directed polymer with boundary sources and the continuum directed random polymer with (m,n)-spiked boundary perturbations. Th
Externí odkaz:
http://arxiv.org/abs/1809.09869
Autor:
Vető, Bálint
Publikováno v:
In Stochastic Processes and their Applications June 2022 148:227-266
Autor:
Ferrari, Patrik L., Vető, Bálint
Publikováno v:
Electron. J. Probab. 22 (2017), no. 79, 1-32
We consider $N$ non-intersecting Brownian bridges conditioned to stay below a fixed threshold. We consider a scaling limit where the limit shape is tangential to the threshold. In the large $N$ limit, we determine the limiting distribution of the top
Externí odkaz:
http://arxiv.org/abs/1608.00394