Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Vesta Afzali Gorooh"'
Publikováno v:
Atmosphere, Vol 14, Iss 12, p 1832 (2023)
Near-real-time satellite precipitation estimation is indispensable in areas where ground-based measurements are not available. In this study, an evaluation of two near-real-time products from the Center for Hydrometeorology and Remote Sensing at the
Externí odkaz:
https://doaj.org/article/26b1c6ec0f6e487d97bf6f8937ed01d0
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022)
Abstract Increases in precipitation rates and volumes from tropical cyclones (TCs) caused by anthropogenic warming are predicted by climate modeling studies and have been identified in several high intensity storms occurring over the last half decade
Externí odkaz:
https://doaj.org/article/f682bab678df4e37a6dd66edd8b600e0
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-1 (2022)
Externí odkaz:
https://doaj.org/article/51272fefa84c430b9617a1a8c01152ca
Autor:
Hamidreza Mosaffa, Mojtaba Sadeghi, Negin Hayatbini, Vesta Afzali Gorooh, Ata Akbari Asanjan, Phu Nguyen, Soroosh Sorooshian
Publikováno v:
Remote Sensing, Vol 12, Iss 10, p 1584 (2020)
Spatiotemporal precipitation trend analysis provides valuable information for water management decision-making. Satellite-based precipitation products with high spatial and temporal resolution and long records, as opposed to temporally and spatially
Externí odkaz:
https://doaj.org/article/d7e5cb8dcbc740dcb893b9958325360c
Autor:
Vesta Afzali Gorooh, Subodh Kalia, Phu Nguyen, Kuo-lin Hsu, Soroosh Sorooshian, Sangram Ganguly, Ramakrishna R. Nemani
Publikováno v:
Remote Sensing, Vol 12, Iss 2, p 316 (2020)
Satellite remote sensing plays a pivotal role in characterizing hydrometeorological components including cloud types and their associated precipitation. The Cloud Profiling Radar (CPR) on the Polar Orbiting CloudSat satellite has provided a unique da
Externí odkaz:
https://doaj.org/article/d260df92e4634af592a4b879a586e514
Autor:
Vesta Afzali Gorooh, Eric J. Shearer, Phu Nguyen, Kuolin Hsu, Soroosh Sorooshian, Forest Cannon, Marty Ralph
Publikováno v:
Journal of Hydrometeorology. 23:1899-1911
Most heavy precipitation events and extreme flooding over the U.S. Pacific coast can be linked to prevalent atmospheric river (AR) conditions. Thus, reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for wat
Publikováno v:
Journal of Hydrometeorology. 23:597-617
Recent developments in “headline-making” deep neural networks (DNNs), specifically convolutional neural networks (CNNs), along with advancements in computational power, open great opportunities to integrate massive amounts of real-time observatio
Autor:
E. J. Shearer, Soroosh Sorooshian, Phu Nguyen, Kuolin Hsu, Vesta Afzali Gorooh, David T. Bolvin, Mohammed Ombadi, Martin F. Ralph, Mojtaba Sadeghi
Publikováno v:
Journal of hydrometeorology, vol 21, iss 12
J Hydrometeorol
J Hydrometeorol
This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-global, infrared-base
Autor:
E. J. Shearer, Mohammed Ombadi, Marty Ralph, Phu Nguyen, Kuolin Hsu, Soroosh Sorooshian, W. S. Logan, Vesta Afzali Gorooh
Publikováno v:
Bulletin of the American Meteorological Society. 101:389-394
Autor:
W. S. Logan, Mohammed Ombadi, Marty Ralph, E. J. Shearer, Kuolin Hsu, Vesta Afzali Gorooh, Phu Nguyen, Soroosh Sorooshian
Publikováno v:
Bulletin of the American Meteorological Society. 101:E286-E302
Precipitation measurements with high spatiotemporal resolution are a vital input for hydrometeorological and water resources studies; decision-making in disaster management; and weather, climate, and hydrological forecasting. Moreover, real-time prec