Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Vesikko, Toni"'
A variety of norm inequalities related to Bergman and Dirichlet spaces induced by radial weights are considered. Some of the results obtained can be considered as generalizations of certain known special cases while most of the estimates discovered a
Externí odkaz:
http://arxiv.org/abs/2311.06191
We show that the norm in the Hardy space $H^p$ satisfies \begin{equation}\label{absteq} \|f\|_{H^p}^p\asymp\int_0^1M_q^p(r,f')(1-r)^{p\left(1-\frac1q\right)}\,dr+|f(0)|^p\tag{\dag} \end{equation} for all univalent functions provided that either $q\ge
Externí odkaz:
http://arxiv.org/abs/2201.06122
We establish pointwise growth estimates for the spherical derivative of solutions of the first order algebraic differential equations. A generalization of this result to higher order equations is also given. We discuss the related question of when fo
Externí odkaz:
http://arxiv.org/abs/1906.05761
Autor:
Huusko, Juha-Matti, Vesikko, Toni
We study locally univalent functions $f$ analytic in the unit disc $\mathbb{D}$ of the complex plane such that $|{f"(z)/f'(z)}|(1-|z|^2)\leq 1+C(1-|z|)$ holds for all $z\in\mathbb{D}$, for some $0
Externí odkaz:
http://arxiv.org/abs/1705.05738
Autor:
Huusko, Juha-Matti, Vesikko, Toni
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 February 2018 458(1):781-794
Publikováno v:
Proceedings of the American Mathematical Society; Feb2023, Vol. 151 Issue 2, p611-621, 11p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.