Zobrazeno 1 - 10
of 269
pro vyhledávání: '"Veselić, Ivan"'
Autor:
Dicke, Alexander, Veselic, Ivan
It is shown that the restriction of a polynomial to a sphere satisfies a Logvinenko-Sereda-Kovrijkine type inequality (a specific type of uncertainty relation). This implies a spectral inequality for the Laplace-Beltrami operator, which, in turn, yie
Externí odkaz:
http://arxiv.org/abs/2207.01369
Publikováno v:
Partial Differ. Equ. Appl. 5, 7 (2024)
We prove a spectral inequality (a specific type of uncertainty relation) for Schr\"odinger operators with confinement potentials, in particular of Shubin-type. The sensor sets are allowed to decay exponentially, where the precise allowed decay rate d
Externí odkaz:
http://arxiv.org/abs/2206.08682
Publikováno v:
J Fourier Anal Appl 29, 11 (2023)
We establish a family of uncertainty principles for finite linear combinations of Hermite functions. More precisely, we give a geometric criterion on a subset $S\subset \RR^d$ ensuring that the $L^2$-seminorm associated to $S$ is equivalent to the fu
Externí odkaz:
http://arxiv.org/abs/2201.11703
Publikováno v:
ESAIM: COCV, 29 (2023) 80
We prove observability and null-controllability for quadratic parabolic differential equations. The sensor set is allowed to be sparse and have finite volume if the generator has trivial singular space $S$. In the case of generators with singular spa
Externí odkaz:
http://arxiv.org/abs/2201.02370
Autor:
Veselic, Ivan
This is an extended abstract for the Oberwolfach Workshop 2101b \emph{Geometry, Dynamics and Spectrum of Operators on Discrete Spaces} organized by David Damanik, Matthias Keller, Tatiana Smirnova-Nagnibeda, and Felix Pogorzelski. It took place in on
Externí odkaz:
http://arxiv.org/abs/2103.09014
Autor:
Täufer, Matthias, Veselic, Ivan
We prove a Wegner estimate for alloy type models merely assuming that the single site potential is lower bounded by a characteristic function of a thick set, that is a particular set of positive measure. The proof is based on two ingredients: New uni
Externí odkaz:
http://arxiv.org/abs/2103.09012
Autor:
Schumacher, Christoph, Veselic, Ivan
We prove Lifshitz behavior at the bottom of the spectrum for non--negative random potentials, i.\,e.\ show that the IDS is exponentially small at low energies. The theory is developed for the breather potential and generalized to all non--negative ra
Externí odkaz:
http://arxiv.org/abs/2103.09010
Autor:
Dicke, Alexander, Veselic, Ivan
Publikováno v:
J. Funct. Anal. 285, No. 7, Article ID 110040, 28 p. (2023)
We prove a scale-free quantitative unique continuation estimate for the gradient of eigenfunctions of divergence-type operators, i.e. operators of the form $-\mathrm{div}A\nabla$, where the matrix function $A$ is uniformly elliptic. The proof uses a
Externí odkaz:
http://arxiv.org/abs/2003.09849
Publikováno v:
Comptes Rendus Math\'ematique. 2018. V. 356. No. 6. P. 686-691
We consider a negative Laplacian in multi-dimensional Euclidean space (or a multi-dimensional layer) with a weak disorder random perturbation. The perturbation consists of a sum of lattice translates of a delta interaction supported on a compact mani
Externí odkaz:
http://arxiv.org/abs/2003.06750
We consider multi-dimensional Schr\"odinger operators with a weak random perturbation distributed in the cells of some periodic lattice. In every cell the perturbation is described by the translate of a fixed abstract operator depending on a random v
Externí odkaz:
http://arxiv.org/abs/2003.03562