Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Vesal Razavimaleki"'
Autor:
Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais, Matthew Trahms
Publikováno v:
Frontiers in Big Data, Vol 5 (2022)
The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase o
Externí odkaz:
https://doaj.org/article/3539277e3915499d865f3af74e494f03
Autor:
Daniel P. Marrone, James E. Aguirre, Justin S. Bracks, Charles M. Bradford, Brock Brendal, Bruce Bumble, Anthony J. Corso, Mark J. Devlin, Nick Emerson, Jeffrey P. Filippini, Jianyang Fu, Victor Gasho, Christopher E. Groppi, Steven Hailey-Dunsheath, Jonathan R. Hoh, Matthew I. Hollister, Reinier M. J. Janssen, Dylan Joralmon, Ryan P. Keenan, Lun-Jun Liu, Ian N. Lowe, Philip D. Mauskopf, Evan C. Mayer, Rong Nie, Vesal Razavimaleki, Joseph G. Redford, Talia Saeid, Isaac L. Trumper, Joaquin D. Vieira
Publikováno v:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI.
Autor:
Abdelrahman Elabd, Vesal Razavimaleki, Shi-Yu Huang, Javier Duarte, Markus Atkinson, Gage DeZoort, Peter Elmer, Scott Hauck, Jin-Xuan Hu, Shih-Chieh Hsu, Bo-Cheng Lai, Mark Neubauer, Isobel Ojalvo, Savannah Thais, Matthew Trahms
Publikováno v:
Frontiers in big data. 5
The determination of charged particle trajectories in collisions at the CERN Large Hadron Collider (LHC) is an important but challenging problem, especially in the high interaction density conditions expected during the future high-luminosity phase o
Autor:
Markus Atkinson, Vesal Razavimaleki, Javier Duarte, Isobel Ojalvo, Peter Elmer, Gage Dezoort, Mark Neubauer, Savannah Thais
Publikováno v:
Computing and Software for Big Science. 5
Recent work has demonstrated that geometric deep learning methods such as graph neural networks (GNNs) are well suited to address a variety of reconstruction problems in high energy particle physics. In particular, particle tracking data is naturally