Zobrazeno 1 - 10
of 148
pro vyhledávání: '"Vershinin, V V"'
Publikováno v:
J. Pure Appl. Algebra 228 (2024), no. 7, Paper No. 107641
We prove that the generating function of the positive singular braid monoid is rational and we give the exact formula for such monoid on three strands.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/2311.00881
Homotopy braid group is the subject of the paper. First, linearity of homotopy braid group over the integers is proved. Then we prove that the group homotopy braid group on three strands is torsion free.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/2008.07806
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vershinin, V. V.1,2 (AUTHOR), Muranov, Yu. V.3 (AUTHOR) muranov@matman.uwm.edu.pl
Publikováno v:
Mathematical Notes. Aug2023, Vol. 114 Issue 1/2, p122-126. 5p.
Let $A$ be either a simplicial complex $K$ or a small category $\mathcal C$ with $V(A)$ as its set of vertices or objects. We define a twisted structure on $A$ with coefficients in a simplicial group $G$ as a function $$ \delta\colon V(A)\longrightar
Externí odkaz:
http://arxiv.org/abs/1509.06424
Brunnian braids have interesting relations with homotopy groups of spheres. In this work, we study the graded Lie algebra of the descending central series related to Brunnian subgroup of the pure braid group. A presentation of this Lie algebra is obt
Externí odkaz:
http://arxiv.org/abs/1502.03479
Autor:
Kovaleva, T. N., Vershinin, V. V., Sokolova, T. A., Khvatysh, N. V., Khutorova, A. O., Glinushkin, A. P., Kosolapov, V. M.
Publikováno v:
AIP Conference Proceedings; 2023, Vol. 2929 Issue 1, p1-5, 5p
Autor:
Kaabi, N., Vershinin, V. V.
We construct a universal Vassiliev invariant for braid groups of the sphere and the mapping class groups of the sphere with $n$ punctures. The case of a sphere is different from the classical braid groups or braids of oriented surfaces of genus stric
Externí odkaz:
http://arxiv.org/abs/1202.3557
We determine a set of generators for the Brunnian braids on a general surface $M$ for $M\not=S^2$ or $\RP^2$. For the case $M=S^2$ or $\RP^2$, a set of generators for the Brunnian braids on $M$ is given by our generating set together with the homotop
Externí odkaz:
http://arxiv.org/abs/0909.3387
In this article, we investigate various properties of the pure virtual braid group PV_3. From its canonical presentation, we obtain a free product decomposition of PV_3. As a consequence, we show that PV_3 is residually torsion free nilpotent, which
Externí odkaz:
http://arxiv.org/abs/0906.1743