Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Verschoof, Ruben A"'
Autor:
Bullee, Pim A., Verschoof, Ruben A., Bakhuis, Dennis, Huisman, Sander G., Sun, Chao, Lammertink, Rob G. H., Lohse, Detlef
Publikováno v:
Journal of Fluid Mechanics 883 (2020) A61
In this study we experimentally investigate bubbly drag reduction in a highly turbulent flow of water with dispersed air at $5.0 \times 10^{5} \leq \text{Re} \leq 1.7 \times 10^{6}$ over a non-wetting surface containing micro-scale roughness. To do s
Externí odkaz:
http://arxiv.org/abs/2006.08412
Autor:
Bakhuis, Dennis, Mathai, Varghese, Verschoof, Ruben A., Ezeta, Rodrigo, Lohse, Detlef, Huisman, Sander G., Sun, Chao
Publikováno v:
Phys. Rev. Fluids 4, 072301(R) 2019
Practically all flows are turbulent in nature and contain some kind of irregularly-shaped particles, e.g. dirt, pollen, or life forms such as bacteria or insects. The effect of the particles on such flows and vice-versa are highly non-trivial and are
Externí odkaz:
http://arxiv.org/abs/1908.07850
Autor:
Verschoof, Ruben A., Zhu, Xiaojue, Bakhuis, Dennis, Huisman, Sander G., Verzicco, Roberto, Sun, Cuao, Lohse, Detlef
In this study, we combine experiments and direct numerical simulations to investigate the effects of the height of transverse ribs at the walls on both global and local flow properties in turbulent Taylor-Couette flow. We create rib roughness by atta
Externí odkaz:
http://arxiv.org/abs/1805.00955
Autor:
Verschoof, Ruben A., Bakhuis, Dennis, Bullee, Pim A., Huisman, Sander G., Sun, Chao, Lohse, Detlef
We experimentally study the influence of wall roughness on bubble drag reduction in turbulent Taylor-Couette flow, i.e.\ the flow between two concentric, independently rotating cylinders. We measure the drag in the system for the cases with and witho
Externí odkaz:
http://arxiv.org/abs/1804.02749
Autor:
Zhu, Xiaojue, Verschoof, Ruben A., Bakhuis, Dennis, Huisman, Sander G., Verzicco, Roberto, Sun, Chao, Lohse, Detlef
Publikováno v:
Nature Physics, 2018
Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing
Externí odkaz:
http://arxiv.org/abs/1802.04356
Autor:
Bakhuis, Dennis, Verschoof, Ruben A., Mathai, Varghese, Huisman, Sander G., Lohse, Detlef, Sun, Chao
We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted wi
Externí odkaz:
http://arxiv.org/abs/1712.02591
Autor:
Verschoof, Ruben A., Bakhuis, Dennis, Bullee, Pim A., Huisman, Sander G., Sun, Chao, Lohse, Detlef
Air cavities, i.e. air layers developed behind cavitators, are seen as a promising drag reducing method in the maritime industry. Here we utilize the Taylor-Couette (TC) geometry, i.e. the flow between two concentric, independently rotating cylinders
Externí odkaz:
http://arxiv.org/abs/1712.02221
Publikováno v:
J. Fluid Mech. (2018) vol. 846, pp. 834-845
We study periodically driven Taylor-Couette turbulence, i.e. the flow confined between two concentric, independently rotating cylinders. Here, the inner cylinder is driven sinusoidally while the outer cylinder is kept at rest (time-averaged Reynolds
Externí odkaz:
http://arxiv.org/abs/1710.08187
Publikováno v:
Phys. Rev. Lett. 117, 104502 (2016)
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduc
Externí odkaz:
http://arxiv.org/abs/1606.06471
Benefiting from the development of increasingly advanced high speed cameras, flow visualization and analysis nowadays yield detailed data of the flow field in many applications. Notwithstanding this progress, for high speed and supersonic flows it is
Externí odkaz:
http://arxiv.org/abs/1606.06683