Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Vergara, Vicente"'
Autor:
Solís, Soveny, Vergara, Vicente
Osgood functions in the source term are used to produce results for non-existence of local solutions into the framework of non-Gaussian diffusion equations. The critical exponent for non-existence of local solutions is found to depend on the fraction
Externí odkaz:
http://arxiv.org/abs/2405.13151
Autor:
Solís, Soveny, Vergara, Vicente
A subdiffusion problem in which the diffusion term is related to a stable stochastic process is introduced. Linear models of these systems have been studied in a general way, but non-linear models require a more specific analysis. The model presented
Externí odkaz:
http://arxiv.org/abs/2105.01272
The aim of this paper is to deal with the $k$-Hessian counterpart of the Laplace equation involving a nonlinearity studied by Matukuma. Namely, our model is the problem \begin{equation*} (1)\;\;\;\begin{cases} S_k(D^2u)= \lambda \frac{|x|^{\mu-2}}{(1
Externí odkaz:
http://arxiv.org/abs/1807.11644
Autor:
Pozo, Juan C., Vergara, Vicente
In this paper, we study a fully non-local reaction-diffusion equation which is non-local both in time and space. We apply subordination principles to construct the fundamental solutions of this problem, which we use to find a representation of the mi
Externí odkaz:
http://arxiv.org/abs/1801.03112
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vergara, Vicente, Zacher, Rico
We consider non-local in time semilinear subdiffusion equations on a bounded domain, where the kernel in the integro-differential operator belongs to a large class, which covers many relevant cases from physics applications, in particular the importa
Externí odkaz:
http://arxiv.org/abs/1610.04756
Autor:
Sanchez, Justino, Vergara, Vicente
We consider the problem \begin{equation}(1)\;\;\; \begin{cases} S_k(D^2u)= \lambda |x|^{\sigma} (1-u)^q &\mbox{in }\;\; B,\\ u <0 & \mbox{in }\;\; B,\\ u=0 &\mbox{on }\partial B, \end{cases} \end{equation} where $B$ denotes the unit ball in $\mathbb{
Externí odkaz:
http://arxiv.org/abs/1603.07280
Autor:
Sánchez, Justino, Vergara, Vicente
We consider the problem \begin{equation}\label{Eq:Abstract} (1)\;\;\;\begin{cases} S_k(D^2u)= \lambda (1-u)^q &\mbox{in }\;\; B,\\ u <0 & \mbox{in }\;\; B,\\ u=0 &\mbox{on }\partial B, \end{cases} \end{equation} where $B$ denotes the unit ball in $\m
Externí odkaz:
http://arxiv.org/abs/1510.07669
Autor:
Vergara, Vicente.
Halle (Saale), Univ., Diss., 2006.
Externí odkaz:
http://sundoc.bibliothek.uni-halle.de/diss-online/06/06H094/prom.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=984730699
http://deposit.ddb.de/cgi-bin/dokserv?idn=984730699
We prove optimal estimates for the decay in time of solutions to a rather general class of non-local in time subdiffusion equations in $\mathbb{R}^d$. An important special case is the time-fractional diffusion equation, which has seen much interest d
Externí odkaz:
http://arxiv.org/abs/1403.1737