Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Vergara, J. David"'
This work introduces a geometrical object that generalizes the quantum geometric tensor; we call it $N$-bein. Analogous to the vielbein (orthonormal frame) used in the Cartan formalism, the $N$-bein behaves like a ``square root'' of the quantum geome
Externí odkaz:
http://arxiv.org/abs/2406.19468
Autor:
Davy-Castillo, Joshua, Cano-Arango, Javier A., Juárez, Sergio B., Austrich-Olivares, Joan A., Vergara, J. David
In this paper, we extend the quantum geometric tensor for parameter-dependent curved spaces to higher dimensions, and introduce an equivalent definition that generalizes the Zanardi, et al, formulation of the tensor. The parameter-dependent metric mo
Externí odkaz:
http://arxiv.org/abs/2403.09804
We compute both analytically and numerically the geometry of the parameter space of the anharmonic oscillator employing the quantum metric tensor and its scalar curvature. A novel semiclassical treatment based on a Fourier decomposition allows to con
Externí odkaz:
http://arxiv.org/abs/2308.11848
Publikováno v:
Phys. Scr. 98 (2023) 095106
The quantum geometric tensor, composed of the quantum metric tensor and Berry curvature, fully encodes the parameter space geometry of a physical system. We first provide a formulation of the quantum geometrical tensor in the path integral formalism
Externí odkaz:
http://arxiv.org/abs/2305.11525
It has recently been proposed classical analogs of the purity, linear quantum entropy, and von Neumann entropy for classical integrable systems, when the corresponding quantum system is in a Gaussian state. We generalized these results by providing c
Externí odkaz:
http://arxiv.org/abs/2305.02887
Publikováno v:
Entropy 2022, 24, 1236
We introduce a quantum geometric tensor in a curved space with a parameter-dependent metric, which contains the quantum metric tensor as the symmetric part and the Berry curvature corresponding to the antisymmetric part. This parameter-dependent metr
Externí odkaz:
http://arxiv.org/abs/2209.07728
Publikováno v:
Physical Review A 105, 062412 (2022)
We obtain a classical analog of the quantum covariance matrix by performing its classical approximation for any continuous quantum state, and we illustrate this approach with the anharmonic oscillator. Using this classical covariance matrix, we propo
Externí odkaz:
http://arxiv.org/abs/2112.10899
Publikováno v:
Physical Review E 104, 014113 (2021)
We study the classical analog of the quantum metric tensor and its scalar curvature for two well-known quantum physics models. First, we analyze the geometry of the parameter space for the Dicke model with the aid of the classical and quantum metrics
Externí odkaz:
http://arxiv.org/abs/2107.05758
Autor:
Gutiérrez-Ruiz, Daniel, Gonzalez, Diego, Chávez-Carlos, Jorge, Hirsch, Jorge G., Vergara, J. David
Publikováno v:
Physical Review B103, 174104(2021)
We study the quantum metric tensor and its scalar curvature for a particular version of the Lipkin-Meshkov-Glick model. We build the classical Hamiltonian using Bloch coherent states and find its stationary points. They exhibit the presence of a grou
Externí odkaz:
http://arxiv.org/abs/2105.11551
Publikováno v:
J. Phys. A: Math. Theor. 53, 505305 (2020)
The geometry of the parameter space is encoded by the quantum geometric tensor, which captures fundamental information about quantum states and contains both the quantum metric tensor and the curvature of the Berry connection. We present a formulatio
Externí odkaz:
http://arxiv.org/abs/2011.14310